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Introduction on Statistical
Process Monitoring



Statistical Process Monitoring (SPM) – General framework

Framework

• The goal of SPM is to detect the presence of a change in a sequential process

Xn ∼
{

F0(·) for n = 0, 1, 2, . . . , � − 1 in-control (IC),
F1(·) for n = �, � + 1, 2, . . . out-of-control (OC).

• Control charts are the main tools to test the stability of the process using incoming
observations.

Control charts

1. Monitoring statistic: Cn, e.g. Cn = max
{
0,Cn−1 +

(
Xn−�0

�0

)
− k

}
.

2. Control limit: h > 0 for all n > 0.
3. Run length: RL = inf {n : Cn > h}.
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Statistical Process Monitoring (SPM) – General framework

Design of a control chart

• Selection of control chart tuning parameters, which typically depend on the expected
process shift.

• Selection of the control limit h, which is usually chosen so that

ARLIC = E[RL|� = ∞] = ARL0 ,

for some value of ARL0 (e.g. 200, 370, 500, . . . )

Performance metrics

• Small values of ARL�0 = E[RL|� = �0] mean that the chart performs better.

2/19



Statistical Process Monitoring (SPM) – General framework

Design of a control chart

• Selection of control chart tuning parameters, which typically depend on the expected
process shift.

• Selection of the control limit h, which is usually chosen so that

ARLIC = E[RL|� = ∞] = ARL0 ,

for some value of ARL0 (e.g. 200, 370, 500, . . . )

Performance metrics

• Small values of ARL�0 = E[RL|� = �0] mean that the chart performs better.

2/19



Statistical Process Monitoring (SPM) – General framework

Design of a control chart

• Selection of control chart tuning parameters, which typically depend on the expected
process shift.

• Selection of the control limit h, which is usually chosen so that

ARLIC = E[RL|� = ∞] = ARL0 ,

for some value of ARL0 (e.g. 200, 370, 500, . . . )

Performance metrics

• Small values of ARL�0 = E[RL|� = �0] mean that the chart performs better.

2/19



Statistical Process Monitoring (SPM) – General framework

Example of (analytical) optimization

• Consider a CUSUM control chart Cn = max
{
0,Cn−1 +

(
Xn−�0

�0

)
− k

}
for monitoring

changes in the mean of the process.
• Assume that the IC process observations are i.i.d. Xn ∼ N(�0 , �0).
• Suppose that the expected OC mean is �1 and the (standardized) change to be detected is
� =

�1−�0

�0
.

• Then, it is well-known that the tuning parameter that minimizes the ARL1 is k = �/2,
irrespective of the value of ARL0.
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Optimization Using Stochastic
Approximations



Optimal control chart design

Chart design

• Control charts (and their run lengths) depend on a set of tuning parameters ζ ∈ Rd .
• Different values of tuning parameters allow better detection of different magnitudes of
parameter shifts.

• The goal is to optimize the ARLOC under the constraint on the in-control ARL,

ζ∗ = argmin
ζ∈Z

E1[RL(ζ , h(ζ))]

s.t. E0[RL(ζ , h(ζ))] = ARL0 ,
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Classical methods for optimization

Analytical methods

• Applicable only in very simple cases (CUSUM with Gaussian observations, . . . )

Numerical methods

• Numerical quadrature (for example, Knoth, 2017).
• Limitations: applicable for some specific control charts, scales poorly when d > 1.

Monte-Carlo approaches

• Estimate ARLOC for given ζ with a large number of simulations and use optimization tools.
• Grid search (Qiu, 2008; Qiu and Xie, 2021).
• Other numerical solvers (Capizzi and Masarotto, 2003; Mahmoud and Zahran, 2010).

• Limitations: function is treated as deterministic, methodologies are expensive to scale for
d > 1 (as we will see later).
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A primer on Stochastic Approximations (SA)

Starting point

• Let Q(ζ , h(ζ)) be the noisy function we want to minimize
• LetΨ : Rd →Z be the projection onto the nearest point inZ.
• We would like to find the minimum of Q using a gradient descent iteration (Spall, 2003)

ζ̂k+1 = Ψ

(
ζ̂k − ak

%Q(ζ , h(ζ))
%ζ

���
ζ=ζ̂

)
, k = 1, 2, . . . (1)

• Problem: The gradient in (1) is unknown and cannot be expressed in closed form.

Stochastic approximations approach

• Estimate the gradient using finite differences and use ζ̂k+1 = Ψ
(
ζ̂k − ak ĝk(ζ̂k)

)
,

• When ζ ∈ Rd , the SA method requires evaluating the function Q at 2d parameter values.
• Problem: Because of the ARLIC constraint, the function Q is expensive to evaluate.
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Simultaneous Perturbation Stochastic Approximations (SPSA)

Simultaneous perturbations approach

• Let �k = (Δ1k , . . . ,Δdk) be independent zero-mean random variables that are symmetric.
• Typically (Spall, 2003)

Δjk
iid∼

{
1 with probability 1/2,
−1 with probability 1/2.

• Perturb the current parameter estimates: ζ̂+k = Ψ(ζ̂k + ck�k) and ζ̂−k = Ψ(ζ̂k − ck�k).
• Gradient estimate is

ĝk(ζ̂k) =
Q(ζ̂+k , h(ζ̂

+
k )) − Q(ζ̂−k , h(ζ̂

−
k ))

2ck

©­­«
Δ−1
1k
...

Δ−1dk

ª®®¬ , (2)

• Advantage: requires 2 evaluations of Q irrespective of the dimension d.
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Further enhancements

Polyak averaging

• The estimate of the optimum ζ∗ at iteration k is the average over the optimization path,

ζk =
1

k − Nf

k∑
ℓ=Nf+1

ζ̂ℓ ,

• Averaging increases stability while providing a similar convergence rate to the solution.

Noise reduction

• Once h(ζ̂k) is found, r = 100 simulations of Q(ζ̂k) are used to estimate ĝ(ζ̂k).

Computational bottleneck

• Calculation of the control limits h(ζ̂+k ) and h(ζ̂−k ) is the algorithm’s bottleneck.
• We use a low-precision SA algorithm (Capizzi and Masarotto, 2016) with a warm-start
initialization that allows it to become more accurate as k increases.
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Convergence criterion

“Stochastic” convergence criterion

• A reasonable stopping rule of the algorithm is | E[ĝjk(ζ̂k)]| ≤ �, for a small value of �
• We leverage the asymptotic distribution of the PR averaging scheme (Maryak, 1997),

k1/3 [Q′(ζk) − Q′(ζ∗ − �)
] .∼ Nd(0,Q′′(ζ∗ − �)ΣQ′′(ζ∗ − �)>)

• Using a similar approach to Capizzi and Masarotto (2016), a stopping criterion can be
defined as

Ns = inf

{
k > Nm + Nf : k ≥

( z
�

)2
max

j=1,...,p

1

N − Nf

k∑
ℓ=Nf+1

gjℓ (ζ̂k)2
}
,

• z is the [(1 − �)/2]-th quantile of the standard normal distribution.
• Nm + Nf is specified to avoid a premature ending of the algorithm.
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Convergence criterion ii

“Deterministic” convergence criterion

• The “stochastic” convergence criterion Ns is coupled with a classical “deterministic”
convergence criterion,

Na = inf
{
k > Nm + Nf : ‖ζk − ζk−1‖ < �

}
.

Convergence criterion

• The convergence criterion used in our simulation is N = min
{
Ns ,Na

}
.

• The convergence criteria Ns and Na are “complementary”:
• Ns is useful for optimizing “flat” functions, where the variance is small.
• Na can help when functions have high curvature, because ζ̂k will “jump around” the optimum
and the effect will be averaged out in ζk (Maryak, 1997).
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Numerical results



Comparison with traditional methods

Grid search

• At iteration k, divide each coordinate of a grid [ζ(k)min , ζ
(k)
max] in m segments and calculate the

objective function at the endpoints.
• Find the endpoint ζ(k+1) with minimum value of the objective.
• The endpoints adjacent to ζ(k+1) define [ζ(k+1)min , ζ

(k+1)
max ].

Nelder-Mead

• Method based on reflection, extension, contraction, and shrinkage of a simplex.
• An efficient implementation is available in the NLopt.jl package.
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Results

• CUSUM control chart: Ct = max {0,Ct−1 + Xt − k}, Xt ∼ N(�, 1) for various �’s.
• Optimal parameter to detect the mean shift � is k∗ = �/2.

Figure 1: Estimated optimal parameter values over 100 optimizations.
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Results

Figure 2: Computing times over 100 optimization.
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Multidimensional scalability

• MEWMA control chart: Ct = (I −Λ)Ct−1 +ΛXt , with Λ = diag(�1 , . . . ,�d) and �j ∈ (0, 1)
for all j. Xt ,1 ∼ N(�, 1),Xt ,2 ∼ "2

1+�
√
2
,Xt ,3 ∼ Pois(1 + �).

Figure 3: Median, 0.1th and 0.9th quantiles of the computing times over 100 optimizations. 14/19



Extension to other metrics

Generalizations

• Sometimes, other metrics such as the median run length or quantiles of the run length are
of interest (Knoth, 2015).

• The proposed SPSA algorithm is flexible enough to be generalized to other performance
metrics based on the RL.

Example: median run length

• Minimization of the out-of-control median run length with a constraint on the in-control
median run length.

• Q becomes the median of the r simulated out-of-control run lengths.
• The control limit is estimated using a modified gradient iteration in the SA algorithm
(Capizzi and Masarotto, 2009)
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Conclusion



Summary

• We have proposed a novel methodology for a more efficient design of control charts
tuning parameters.

• The only requirement is to be able to simulate run lengths from the IC process (e.g. using
parametric/nonparametric bootstrap, bootstrap for time series, . . . )

• The methodology is based on a stochastic approximations algorithm that is specifically
designed for the constrained optimization problem.

• Numerical simulation suggest that the approach is more efficient than traditional
approaches, especially for multi-dimensional tuning parameters.

• Due to its flexibility, it can be generalized to the optimization of various performance
metrics such as median run length, run length quantiles, etc.
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Selection of the tuning constants in the SPSA algorithm i

• The proposed SPSA algorithm requires the selection of many tuning constants.
• A semi-automated way of selecting most of the tuning constants is available following the
guidelines by Spall (1992), Spall (1998) and Spall (2003).

• The gain sequences in the algorithm are defined as ak = a/(k + A + 1)
 and ck = c/(k + 1)� ,
where 
 and � are pre-specified to be 0.602 and 0.101, respectively (Spall, 2003)

• These gain sequences would result in a slow gain decay and ensure the convergence of ζ̂k to
ζ∗ as k →∞ under some quite general assumptions, as proved by Spall (1992).

• The constant a,A and c require a small preliminary adaptive step in order to be estimated.
• c can be approximately set to be the standard deviation �

ζ̂0
of the OC RL calculated at the initial

value ζ̂0 (Spall, 1998).
• In numerical studies, we have seen that setting c = min{�̂

ζ̂0
, 0.1} can avoid excessive

perturbation of the tuning parameters in the early iterations.
• A can be set to be 0.1 times the expected number of function evaluations. For example, the
expected number of evaluations used in this paper is 150, resulting in A = 0.1 × 150 = 15.



Selection of the tuning constants in the SPSA algorithm ii

• (Spall, 1998) recommends selecting a to be the expected magnitude change in ζ̂k during the
first few iterations. Specifically,

a = s · (A + 1)
/G,

where s is the initial step size and G = 1
d
∑d

j=1
∑nc

l=1 ĝjl (ζ̂0)/nc is a preliminary estimate of the
average value of the gradient in ζ̂0 based on nc simulated RLs.

• For instance, a reasonable initial step size s for an EWMA chart could be 0.2, and setting
nc = 20 is found to be appropriate to estimate the gradient at the beginning of the algorithm.
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