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Time series
Instructor : prof. L. Bisaglia

This is a short course aimed at giving an introduction to time series models and their application
to modelling and prediction of data collected sequentially in time. The aim is to provide specific
techniques for handling data and at the same time to provide some understanding of the theoretical
basis for the techniques. Topics covered will include univariate linear and non linear models (both
in mean and variance) and some basics of spectral analysis. Finally, we will cover some aspects of
long-memory and integer autoregressive models for count data.

Textbook references

Brockwell and Davis (2016) Introduction to Time Series and Forecasting

Fan and Yao (2005) Nonlinear Time Series: Nonparametric and Parametric Methods

Shumway and Stoffer (2017) Time Series Analysis and Its Applications: With R Examples

Tsay (2013) Multivariate Time Series Analysis: With R and Financial Appli-
cations

Wei (2019) Multivariate Time Series Analysis and Applications

Brockwell (2009) Time Series: Theory and Methods

Douc et al. (2014) Nonlinear Time Series: Theory, Methods and Applications with R
Examples
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Lecture 1: Introduction to time series

Lecture 1: Introduction to time series
2021-11-12

In general, in time series we are interested in a) understanding the stochastic mechanism that gives
rise to an observed series and b) to forecast future values of a series based on the observed history.
As this course is introductory, we will restrict our analysis to univariate time series.

Assumption We assume that future behaviour is equal to previous behaviour, i.e. we are able to
forecast the future based on the information about the observed past data.

Figure 1: Classical linear time series models are not able to explain this behaviour, since cyclic
components are not constant in amplitude over time.

There are several approaches in modern time series, namely

› Classical approach: trend + cycle + seasonality.

› Modern approach: Box and Jenkins procedure with ARIMA models.

› State-space approach: follows Durbin and Koopman (2012), we will not treat it here.

1.1 Classical approach

We assume a data-generating process given by a basic deterministic function of time plus additive
noise,

Yt = f(t) + εt, εt ∼WN(0, σ2
ε),

such that E[εt] = 0, V[εt] = σ2
ε , Cov(εi, εj) = 0 for i 6= j. Assuming different shapes of f(t) lets us

obtain different types of time series:

› Additive: trend + seasonality + cycles: f(t) = Tt + St + Ct
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1.2 Modern approach Lecture 1: Introduction to time series

› Multiplicative: trend · seasonality · cycles: f(t) = Tt · St · Ct

The classical approach establishes that trend, seasonal, and cyclic components should be estimated
separately with simple models and then combined. For example, we can use a linear model for the
trend such as

Tt = α0 + α1t+ α2t
2 + . . .+ αgt

g.

On the other hand, in order to model St we could use dummy variables with sine/cosine transform
to promote cyclic behaviour.

Problem Empirical time series contain both deterministic trends and stochastic trends, which
cannot be modeled by stationary processes.

deterministic trend E[Xt] = f(t)

stochastic trend
t∑
i=1

εt

1.2 Modern approach

We can consider the data-generating process (DGP) as a stochastic process which yields the observed
time series as a sample path over time. To perform statistical inference, we need to assume that at
least some features of the underlying probability law are stationary over the time period of interest.

Def. (Stochastic process)

A collection of random variables X = (Xt)t defined on a probability space (Ω,F ,P) is called
a stochastic process

Remark A stochastic process is therefore a function of two arguments X : T × Ω → X,
(t, ω) 7→ Xt(ω) and for a fixed value of ω we obtain a path from the stochatstic process.

Sample We only observe a portion of the infinite path of the stochastic process,

. . . , X−t, X−t−1, . . . , X0, X1, X2, . . . , Xt︸ ︷︷ ︸
x1,x2,...,xt

, . . . ,

therefore if we want to make inference over the DGP we must make some strong assumptions.

Def. (Mean function)

For a stochastic process Xt, the mean function is

µt = E[Xt] for t ∈ T .

Def. (Autocovariance function)

For a stochastic process Xt, the autocovariance function is

γt,s = Cov(Xt, Xs) = E[(Xt − µt)(Xs − µs)], for t, s = 0,±1,±2, . . .

3



1.2 Modern approach Lecture 1: Introduction to time series

The autocorrelation function is then defined as

Corr(Xt, Xs) =
Cov(Xt, Xs)√
V[Xt]

√
V[Xs]

.

We need to make some strong assumptions on the structure of the process in order to make inference
possible.

Def. (Strong stationarity)

A process (Xt)t is strictly stationary if it is invariant under time shifts, i.e. if

(Xt1 , . . . , Xtn)
d
= (Xt1+k, . . . , Xtn+k)

for any n ≥ 1, any choice of t1, . . . , tn and al time shifts k ∈ Z.

Marginals Choosing for instance n = 1 means that the marginal distribution of Xt the same as
that of Xt−k for all t and k.

Def. (Weak stationarity)

A process (Xt)t is weakly stationary if

1. E[Xt] = µ <∞ for all t.

2. V[Xt] = σ2 <∞ for all t.

3. Cov(Xt, Xt−k) = γ(k) is independent of t for each k.

Weaker Rather than imposing conditions on all possible distributions, we impose conditions only
on the first two moments of the series.

Implications

› Strong stationarity + E[Xt]
2 <∞ =⇒ weak stationarity.

› Weak stationarity���=⇒ strong stationarity.

› Weak stationarity + Gaussian =⇒ Strong stationarity.

Example (Random walk)

For a random walk Yt = Yt−1 + εt, we have that V[Yt] = tσ2 and the process is therefore
non-stationary.

Since our objective is to find a model which is able to take into account the linear dependence
between the observations, two very important functions are the autocorrelation and autocovariance
functions.

4



1.2 Modern approach Lecture 1: Introduction to time series

Since for a stationary time series Xt we have Cov(Xt, Xt−k) = γ(k) for all k, we can therefore define
the ACF as

ρ(k) =
γ(k)

γ(0)
, k = 0,±1,±2, . . .

from which we can see that γ and ρ are even functions, namely

γ(−k) = γ(k), ρ(−k) = ρ(k).

Def. (Sample autocorrelation function)

We define the sample autocorrelation function (ACF) as

ρ̂(k) =
γ̂(k)

γ̂(0)
,

where

γ̂(k) =
1

n

n−|k|∑
t=1

(Xt −X)(Xt+|k| −X).

Bias Even if this estimator is biased in finite samples, this is preferred to the unbiased estimator
since when dividing by n we have a nonnegative-definite estimator.

In addition to autocorrelation, we also consider the correlation betweenXt andXt+k after controlling
for the effect of the intermediate values Xt+1, . . . , Xt+k−1 using a linear regression (projection). We
call this dependence the partial autocorrelation of X.

Def. (Partial autocorrelation)

The partial autocorrelation at lag k is the autocorrelation between zt and zt+k with the
linear dependence of zt on zt+1, . . . , zt+k−1 removed. Namely,α(1) = Corr(zt+1, zt)

α(k) = Corr
(
zt+k − πt,k(zt+k), zt − πt,k(zt)

)
if k ≥ 2

where πt,k(x) is the orthogonal projection (regression) of x onto zt+1, . . . , zt+k−1.

5



1.2 Modern approach Lecture 1: Introduction to time series

Figure 2: Autocorrelation (top) and partial autocorrelation (bottom) for a simulated time
series.

The ACF and PACF are the main instruments that we use for choosing the most appropriate model
for the DGP under the modern approach to time series (Box-Jenkins procedure).
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Lecture 2: Stochastic processes in time-series analysis

Lecture 2: Stochastic processes in time-series analysis
2021-11-29

In this lecture we review some of the fundamental processes used in time-series analysis, starting
from the simplest process (white noise) and then moving towards standard but more complicated
construction (ARIMA).

2.1 White noise process

The white-noise process serves as the building block for defining more complex linear time series
processes and reflects information that is not directly observable. In general, any sequence Xt of
i.i.d random variables such that E[Xt] = 0 and V[Xt] = σ2 <∞ is a white noise process.

In general it’s convenient to write a stochastic process as a sum of white noise terms,

Xt =

∞∑
j=1

ψjεj ,

since we can leverage standard proof techniques to prove theorems related to the process behaviour.

In the white-noise case, the probability behavior (law) of X is completely determined by all of its
finite-dimensional distributions. When all of the finite-dimensional distributions are Gaussian, the
process is called a Gaussian process.

Since uncorrelated normal random variables are also independent, a Gaussian white-noise process
is, in fact, a sequence of i.i.d normal random variables.

2.2 Random walk

Whereas the white noise is a simple process with no memory, the random walk has infinite memory
and is nonstationary,

Xt = µ+Xt−1 + εt, εt ∼WN(0, σ2),

where X0 = 0 by convention. The process is such that by recursion,

Xt = µ+ (µ+Xt−2 + εt−1) + εt

= . . .

= tµ︸︷︷︸
drift

+

t∑
i=1

εi.︸ ︷︷ ︸
stoch. trend

The last sum is called stochastic trend, since every error ε enters with the same weight both from
new and from past observations. Moreover, E[Xt] = tµ and V[Xt] = tσ2. Applying the first-difference
operator (1−B), where B is such that BXt = Xt−1, to the process yields

(1−B)Xt = Xt −Xt−1 = µ+ εt,

which is a stationary model.

7



2.3 Linear time series Lecture 2: Stochastic processes in time-series analysis

2.3 Linear time series

We introduce the ARMA model, the most famous type of linear time-series model which is used
even for non-linear data. Forecasts from these models in these case have been empirically shown to
be more accurate than forecasts from more complicated models.

A general linear process is of the form

Xt = εt +

∞∑
i=1

ψiεt−i,

where
∑∞
i=1 ψ

2
i <∞. This type of process is such that

i. E[Xt] = 0 for each t

ii. Cov(Xt, tt−k) = σ2
ε

∑∞
i=0 ψiψi+k for k ≥ 0 and ψ0 = 1.

An example is when the weights are an exponentially decaying sequence ψj = ϕj with |ϕ| < 1, and
in this case

Xt = εt + ϕεt−1 + ϕ2εt−2 + . . .

The variance of this process can be written as a geometric series

V[Xt] = σ2
ε ·
∞∑
i=0

ϕk =
σ2
ε

1− ϕ2
,

moreover, the covariance and correlation functions are

Cov(Xt, Xt−k) =
ϕkσ2

ε

1− ϕ2

Corr(Xt, Xt−k) = ϕk

A moving average model of the form MA(q) is the above model truncated to the first q components:

Xt = ϑ1εt−1 + . . .+ ϑqεt−q + εt.

These models are easily tractable since they are stationary by definition and estimation is very
simple in the Gaussian case.

On the other hand, an autoregressive model AR is such that

Xt = c+ ϕ1X1 + . . .+ ϕpXt−p + εt,

where Xt’s could also be random variables each uncorrelated with the next value Xt+1. The expected
value of the process can be calculated in terms of the autoregressive coefficients, by assuming the
process to be stationary

E[Xt] = E[c+ ϕ1Xt−1 + . . .+ ϕpXt−p + εt] =⇒ E[Xt] =
c

1−
∑p
i=1Xt−i

.

8



2.4 ARMA model Lecture 2: Stochastic processes in time-series analysis

Again, by assuming the process to be stationary we observe an autocovariance of the form

γk =

ϕ1γ1 + ϕ2γ2 + . . .+ ϕγp + σ2
ε k = 0

ϕ1γ1 + ϕ2γ2 + . . .+ ϕγp k > 0

ρk = ϕ1ρk−1 + ϕ2ρk−2 + . . .+ ϕpρk−p, k > 0,

which yield the Yule-Walker equations when considering them for k = 1, . . . , p. These equations
can be used to compute the model coefficients when solving them in terms of the unknown ϕ and
sample autocorrelation ρ̂k.

For an AR model we have that the sample autocorrelation is exponentially decaying in k, depending
on the model parameters, and its partial autocorrelation function is null for k > p.

2.4 ARMA model

We introduce the combined ARMA model in order to model more complicated dynamics of time
series, yielding the ARMA(p, q) defined as

Xt = ϕ1Xt−1 + . . .+ ϕpXt−p + ϑ1εt−1 + . . .+ ϑqεt−q + εt, (1)

which usually allows us to model more complicated correlation structures using a smaller number
of parameters.

Using a backshift operator BkXt = Xt−k we can write this model as

ϕ(B)Xt = ϑ(B)εt,

where the polynomials in B are defined as

ϕ(B) = 1− ϕ1B − . . .− ϕpBp

ϑ(B) = 1 + ϑB + . . .+ ϑqB
q

and are extremely important since we can determine the properties of an ARMA model in terms of
ϑ(·) and ϕ(·). Moreover, if the ARMA model (1) is stationary, we can find an AR(∞) representation
for it by solving the equality

ϑ(B)−1ϕ(B)Xt = εt,

and a MA(∞) representation by solving

Xt = ϕ(B)−1ϑ(B)εt.

Example (AR(1))

9



2.4 ARMA model Lecture 2: Stochastic processes in time-series analysis

Consider the AR(1) model, then

Yt = ϕYt−1 + εt

= ϕ(ϕYt−2 + εt+1) + εt

= . . .

= εt + ϕεt−1 + ϕ2εt−2 + . . .

Example (General procedure)

We write the relationship
(1− ϕB)yt = (1− ϑB)εt,

for which we can write
yt =

1− ϑB
1− ϕB

εt.

Our goal now is to obtain a relationship of the form

Yt = Ψ(B)εt =

∞∑
i=0

ψiB
i,

and therefore Ψ(B) = 1−ϑB
1−ϕB , from which

(1− ϕ)Ψ(B) = 1− ϑB~w�
(1− ϕB)(1 + ψ2B + ψ2B

2 + . . .) = 1− ϑB~w�

Example (General AR(∞))

The procedure is the same, except we now have to find a relationship of the form

ϕ(B)Yt = ϑ(B)εt −→

ϕ(B)

ϑ(B)
= Ξ(B),

and find the parameters in terms of ϕ and ϑ.

In order to check for invertibility of the process, we need to invert the MA operator which is doable
if the characteristic equation ϑ(B) = 0 has solutions |Bi| > 1.
In order to check for of the process, we need to invert the AR operator which is doable if the
characteristic equation ϑ(B) = 0 has solutions |Bi| > 1.

10



2.4 ARMA model Lecture 2: Stochastic processes in time-series analysis

Time series models only work if the data is stationary, therefore in general it’s recommended to
check for the evidence of trend or seasonality before applying an ARMA model. We can remove
nonstationarity either via regression or via simple differentiation.

Even though the model might not be invertible, it’s still better to have it stationary and not
invertible. In general, it’s advised to differentiate the series rather than risking for the time series
to be nonstationary.

Testing whether the trend is deterministic or stochastic can be performed via a unit root test, which
is usually not very powerful.
We obtain the ARIMA(p, d, q) class of models by applying a d-order to Xt and modeling the result
as an ARMA(p, q) model, i.e.

ϕ(B)(1−B)dYt = ϑ(B)εt.

› In general, this process is simply an ARMA(p + d, q) with d unit roots in the autoregressive
polynomial.

› In general, we don’t see time series such that d > 2.
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Lecture 3: Transfer function models

Lecture 3: Transfer function models
2021-12-06

Theorem 1 (Wold decomposition)

Let (Xt)t be a non-deterministic stationary time series with E[Xt] = 0, then

Xt =

∞∑
j=0

ψjat−j + Vt,

where Vt is deterministic and

1. ψ0 = 1 and
∑∞
j=1 ψ

2
j <∞.

2. at = WN(0, σ2).

3. E[atas] = 0 for all s, t = 0,±1,±2, . . .

With this decomposition we can approximate any stationary time series using a linear process of the
form

Xt = µ+

∞∑
j=0

ψjat−j ,

where
∑∞
j=1 |ψj | <∞.

3.1 Transfer function models

Transfer function models are models where an output series yt is related to one or more input series
xt. We link the two series by the following transfer function model (TFM)

yi = ν(B)xt + ηt, (2)

where the relationship is linear, ν(B) =
∑∞
j=−∞ νjB

j , and is called the transfer function of the
linear filter that transform xt into yt. ηt is a noise series independent of xt. The weights νj are called
impulse response weights and the TFM is called stable if

∞∑
j=−∞

|νj | <∞,

and in particular this yields a BIBO (Bounded Input Bounded Output) relationship. The TFM is
said to be causal if νj = 0 for j < 0, since the present output is affected only by the system current
and past values,

yt =

∞∑
j=0

νjB
j .

The purpose of TF models is to identify the TF ν(B) and the noise model, possibly using a simpler
representation which is similar to an ARIMA model

δ(B)yt = ω(B)Bbxt,

12



3.1 Transfer function models Lecture 3: Transfer function models

where
δ(B) = 1− δ1B − δ2B2 − . . . δrBr

ω(B) = ω0 − ω1B − . . .− ωsBs

and b is a delay parameter that tells us the lag that elapses before the impulse of the input variable
produces an effect on the output variable.

With the above representation, we can rearrange the terms so that yt has an explicit representation
in terms of xt,

yt =
ω(B)

δ(B)
xt−b + ηt, (3)

and by equating Equation (3) to Equation (2) we can write the transfer function ν(B) as

ν(B) =
ω(B)Bb

δ(B)
. (4)

and the orders s, r, b of the model in Equation (3) can be found by equating the coefficients of Bj

to both sides in Equation (4)
δ(B)ν(B) = ω(B)Bb,

which yields the following equation

(1− δ1B − δ2B2 − . . .− δrBr)(ν0 + ν1B + . . .) = (ω − ω1B − . . .− ωsBs)Bb,

and we obtain the following relationships between the components of the model

νj = 0 if j < b

νj = δ1νj−1 + δ2νj−2 + . . .+ δrνj−r + ω0 if j = b

νj = δ1νj−1 + δ2νj−2 + . . .+ δrνj−r − ωj−b if j = b+ 1, . . . , b+ s

νj = δ1νj−1 + δ2νj−2 + . . .+ δrνj−r if j > b+ s

By observing the behaviour of the cross-correlation function between xt and yt – similarly to what
we do with ACF and PACF for estimating p, d, q in an ARIMA model) – we can find the appropriate
values of s, r, b.

Def. (Cross-correlation function)

We say that Xt and Yt are jointly stationary if they are univariate stationary and
Cov(Xt, Ys) = f(|s−t|), and in this case we define the cross-correlation function between
Xt and Yt as the function

γXY (k) = E[(Xt − µX)(Yt+k − µY )],

Marginals By definition we have that ρXX(k) = ρX(k).

13
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Symmetry It’s relevant the order in which we compute the cross-correlation function, since unlike
the ACF the CCF is not symmetric around the origin,

ρXY (k) 6= ρXY (−k),

instead we have that
ρXY (k) 6= ρY X(−k).

However, we have a way of obtaining the direction of association between the time series by inspecting
the graph of the ACF. The direction depends on the software implementation of the function.

Example (AR(1) model)

Let Yt ∼ AR(1), then we have (1− ϕB)Yt = Xt and for time t+ k we can write

Yt+k =
1

1− ϕB
Xt+k = Xt+k + ϕXt+k−1 + ϕ2Xt+k−2 + . . . ,

therefore the cross-covariance function between Xt and Yt are

γXY (k) = E[XtYt+k] =

ϕkσ2
k if k ≥ 0

0 if k ≤ 0

ARMA model In general, the ARMA(p, q) model can be written as a transfer function model
without the white noise term ηt, and where Xt is a white noise itself uncorrelated with Yt.

3.2 Cross-correlation function and TF models

Let xt and yt be stationary series with µx = µy = 0, then the transfer function at time t+ k is

yt+k = ν0xt+k + ν1xt+k−1 + ν2xt+k−2 + . . .+ ηt+k,

therefore if we multiply both left and right by xt and take expectations we have

γxy(k) = ν0γx(k) + ν1γx(k − 1) + ν2γx(k − 2) + . . . ,

hence the CCF in the doubly stationary case has the following simple representation:

ρxy(k) =
σx
σy

[ν0ρx(k) + ν1ρx(k − 1) + ν2ρx(k − 2) + . . .] . (5)

Therefore, by Equation (5) we observe that the relationship between the CCF and IRF νj is contam-
inated by the fact that they are not white noise, and therefore display the correlations at previous
times. However, for a white noise model xt we would see ρx(k) = 0 for all k 6= 0 and therefore we
would have a direct way of estimating νk by letting

γxy(k) = νkσ
2
k,

14
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hence we can estimate the covariance function nd obtain an impulse response function which is
directly proportional to the CCF,

ρxy(k) =
σx
σy
νk =⇒ νk =

σy
σx
ρxy(k). (6)

Idea Therefore, our goal for estimating a TF model is to reduce the problem to a whitened series
for xt, and then apply the estimation procedure above.

In the general TF model given by
yt = ν(B)xt + ηt,

if we assume xt ∼ ARMA(p, q) we can calculate the pre-whitened input series

αt =
ϕx(B)

ϑx(B)
xt,

and applying this transformation to both yt and ηt we can obtain the filtered seriesβt = ϕx(B)
ϑx(B)yt

εt = ϕx(B)
ϑx(B)ηt

Finally, the TF model becomes
βt = ν(B)αt + εt,

where the input series is αt ∼WN(0, σ2) and we can estimate the transfer function using Equation (6)
between βt and αt.

3.2.1 General procedure for the identification of a TF model

1. Identify an ARMA(p, q) model for the input xt,

ϕx(B)xt = ϑx(B)αt

2. Prewhiten xt → αt = ϕx(B)
ϑx(B)xt and apply the same filter to yt → βt = ϕx(B)

ϑx(B)yt.

3. Calculate the CCF between the whitened input series and the residuals of the model for yt,

ν̂k =
σ̂β
σ̂α

. . . ,

to get a preliminary estimation of the transfer function νk.

4. Identify the order b, r, s of the TF model by inspecting the estimated TF (or equivalently the
CCF) and estimate the transfer function using the fact that

ν̂j =
ω̂(B)

δ̂(B)
Bb,

which is of course done by nonlinear least squares or other methods.
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5. Identify a model for the estimated residuals η̂t given by

η̂t = yt − ν̂(B)xt.

6. Estimate the model and check goodness-of-fit, generally by checking both ε̂t and α̂t are white
noise. Moreover, since we assume that εt ∼WN and ηt ⊥⊥ xt. we need to check that ρ̂α,ε̂(k) is
non significant.

For checking the last step, there are test statistics which are based on Portmanteau tests.
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Lecture 4: Spectral analysis
2021-12-13

In this lecture we introduce spectral analysis, which transforms the data from the time domain to
the frequency domain by decomposing the time series into a Fourier basis of coefficients. The idea
is to decompose Xt in terms of combination of sinusoids with random and uncorrelated coefficients.

4.1 Periodicity

Consider a periodic process of the form

Xt = C · cos(2πωt+ ϕ), t = ±1,±2, . . . ,

where ω is a frequency index, C the amplitude and ϕ the phase of the process. We can introduce
random variation in Xt by allowing the amplitude and phase to vary, since by the usual sine and
cosine rules we can write Xt as

Xt = A cos(2πωt) +B sin(2πωt). (7)

In the above equation, A = C cosϕ and B = −C sinϕ, and A,B ∼ N (0, σ2). We have that

1. C =
√
A2 +B2

2. ϕ = tan−1(−B/A)

3. Xt is a stationary process with µt = 0 and

γ(h) = Cov(Xt, Xt+h) = σ2 cos(2πωh).

We consider a generalization of (7) given by a mixture of periodic series with multiple frequencies
and amplitudes,

Xt = A0 +

q∑
i=1

{Ai cos(2πωit) +Bi sin(2πωit)} , (8)

where Ai, Bi
iid∼ N (0, σ2) and the ωi are distinct frequencies. In this case,

γ(0) =

q∑
i=1

σ2
i , γ(h) =

q∑
i=1

σ2
i cos(2πωit).

The main objective of spectral-based time-series analysis is to sort out the essential frequency
components ωi of a time series, including their relative contribution to the total power of the signal.

For a sample x1, . . . , xn from Xt we can write the following representation

Xt = A0 +

n−1
2∑
j=1

{Aj cos(2πtj/n) +Bj sin(2πtj/n)} , (9)

for t = 1, 2, . . . , n and suitably chosen coefficients. If n is even we can modify the above equation
and an additional component. Equation (9) holds for any sample and can be interpreted as an
approximation to (8) with some coefficients possibly close to zero.
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Our problem is now to estimate the Aj ’s and Bj ’s using a linear model given the frequencies which
are relevant to the observed model. We do so by plotting the periodogram, i.e. the estimates of
the variance explained by the jth component P (j/n) = 1

2 (Â2
j + B̂2

j ).

By inspecting the periodogram we can observe which frequencies ωj = j/n are predominant over
the others and eventually observe frequencies which are “hidden” inside the time series.

Theorem 2 (Parseval’s theorem)

The sample variance is the sum of the contribution of the observed periodogram

1

n

n∑
t=1

(Xt −X)2 =
1

2

n−1
2∑
j=1

(A2
j +B2

j ) =

n−1
2∑
j=1

P (j/n)
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Lecture 5: Spectral analysis (cont.)
2021-12-20

If a stationary process Xt has auto covariance function which is absolutely summable,

∞∑
h=−∞

|γ(h)| <∞,

then it has the representation in terms of its Fourier transform given by

γ(h) =

∫ 1
2

− 1
2

f(ω)e2πiωhf(ω) dω, h = 0,±1,±2, . . . ,

and we can define the spectral density of the process as

f(ω) =

∞∑
h=−∞

γ(h)e−2πiωh, −1

2
≤ ω ≤ 1

2
.

Properties of f

1. f(ω) ≥ 0 for all ω

2. f(ω) = f(−ω), therefore we only consider ω > 0.

3. γ(0) = V[Xt] =
∫ 1/2

−1/2
f(ω) dω, which is the total variance of the process.

Since the ARMA processes satisfy absolute summability, we can represent them in terms of their
spectral densities.

Example (White noise)

White noise is such that Xt ∼ WN(0, σ2) has a constant frequency spectrum, since no
frequency dominates over any other.

Example (AR(1))

We can write

f(ω) =

∞∑
−∞

γ(h)e−2πiωh =
σ2
ε

1− 2ϕ cos(2πω) + ϕ2
,

and if ϕ > 0 the spectrum is dominated by low frequencies, whereas if ϕ < 0 the dominating
frequencies are high.
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Lecture 5: Spectral analysis (cont.)

Figure 3: Frequency spectrum for AR(1) models with ϕ > 0 (above) and ϕ < 0
(below).

Example (MA(1))

The same behaviour can be seen for a moving average model, which is however less visible
than the AR process. Indeed, the MA component is useful to model the component of the
process which has not been explained by the autoregressive part.

Figure 4: Frequency spectrum for a MA(1) model with ϑ > 0 (above) and ϑ < 0
(below).

Example (ARMA(p, q))
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5.1 Estimation of the spectral density Lecture 5: Spectral analysis (cont.)

For a general Xt ∼ ARMA(p, q) we can prove that

f(ω) = σ2
ε

|ϑ(e−2πiω)|2

|ϕ(e−2πiω)|2
(10)

5.1 Estimation of the spectral density

Estimating the spectral density can be done similarly to what we do for the histogram of a continuous
density. Let Xt be a zero-mean stochastic process, we define

f̂(ω) = γ̂0 + 2

n−1∑
k=1

γ̂(k) cos(2πωk),

which is a way in which we can write the spectral density of Xt. The periodogram as we de-
fined above is an inconsistent estimate of the true spectral density, which has poor sample properties.

For a periodogram we can see that

Â2
ω + B̂2

ω

γ0
=

2f̂(ω)

f(ω)
∼ χ2

2,

hence E[f̂(ω)] = f(ω) and V[f̂(ω)] = f2(ω). Hence, the variance of the estimator 6→ 0 as n → ∞,
which means that the estimation strategy yields a bad result.

Alternative methods for constructing estimators include the following approaches:

1. Nonparametric estimators: using a moving average to smooth the estimate,

f(ω) =

m∑
k=−m

wm(k)f̂(ωj +
k

n
),

where wm(k) ≥ 0, wm(k) = wm(−k) and
∑m
k=−m wm(k) = 1. Using the smoothed spectrum

we have
2(2m+ 1)f(ω)

f(ω)
∼ χ2

2(2m+1),

consequently E[f(ω)] ≈ f(ω) and V[f(ω)] ≈ f2(ω)/(2m+1) and we have consistency ifm→∞
while m/n→ 0. We usually choose something like m =

√
n to get some insights into the shape

of the true spectrum.

2. Parametric estimators based on a fitted AR model. Since any ARMA time series admits an
AR(∞) representation, we can use the theoretical estimate of such a model estimated using
AIC, AICC, BIC, . . .

The disadvantage in this case can be the fact that p can be very large. Instead, we can use
an ARMA model and use the theoretical spectral density in Equation (10) to represent the
estimated f̂ .
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Lecture 6: Nonlinear time series models
2022-01-11

A lot of research in the last 30 years has been spent to develop time-series models which can detect
nonlinear patterns in the data. We refer again to Wold’s theorem (??) and consider a time series of
the form

Xt =

∞∑
j=0

ψjat−j + Vt,

where ψ0 = 1 and
∑∞
j=1 ψ

2
j <∞, at ∼WN(0, σ2) and aj ’s are uncorrelated.

Def. (General linear process)

Xt is said to be linear if if can be written as

Xt = µ+

∞∑
j=0

ψjat−j ,

such that
∑
|ψj | <∞ and aj

iid∼ WN(0, σ2). The above process is sometimes called general
linear process.

Limitations Linear models are limited in the sense that they cannot model strong asymmetries
in data, irregular jumps, and switching regimes.

6.1 Nonlinear framework

Whereas linearity is well-defined, non-linearity is hardly definite and the early development of
nonlinear time series focused on various parametric forms: ARCH, GARCH, threshold models, . . .

In this lectures we emphasize simple parametric models which are applicable without overly-complex
specifications. There are examples of explicit and implicit approaches, which differ in the way they
are represented:

› Implicit : ARMA model with non-gaussian innovations.

› Explicit : Xt = h(Xt−1, . . . , Xt−k).

Explicit models have surpassed implicit modelling since it is in general difficult to identify the correct
distribution of the white-noise terms.

Attention In the nonlinear setting, the tools of standard analysis (ACF, PCF, . . . ) are not helpful
since they only detect linear patterns.

Def. (Nonlinear model)

The genreal representation is
Xt = f(at, at−1, at−2),

where at
iid∼ WN(0, σ2) and f(·) is some nonlinear function.
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6.2 NLAR(1) Lecture 6: Nonlinear time series models

Remark We could linearize the above model by considering the Taylor series around zero (Volterra
series)

Xt = µ+
∑
i,j

bijai,t−j +
∑
ijkl

bij,klai,t−jak,t−l + . . . (11)

The Volterra series (11) is usually too complicated unless severely truncated.

Other very general models are ARMA models with time-dependent parameters.

The model for nonlinear time series can be written in terms of the conditional mean and variance,

µt = E[Xt|Ft−1] = g(Ft−1)

σ2
t = V[Xt|Ft−1] = h(Ft−1)

where g and h are well-defined nonlinear function with h(·) > 0. If g(·) is nonlinear and h(·) is
constant, then Xt is nonlinear in mean, for example

Xt = εt + αε2
t−1.

Otherwise, if h(·) is time-variant then Xt is nonlinear in variance. All GARCH models are of this
type.

6.2 NLAR(1)

We consider the simplest conditional mean model given by

Xt = g(Xt−1, ϑ) + at,

where ϑ is a vector of parameters and at ∼ IID. It’s natural to consider functions which are nearly
linear as first candidates, but also more extreme nonlinear functions if needed.

There are few papers on nonlinear autoregressive processes, since the fact that there are too many
nonlinear functions that we can consider renders this class of processes unusable for statistical
analysis.

6.3 Reversibility

Def. (Reversibility)

The stationary sequence Xt is time-reversible if the finite-dimensional distributions of
(X1, X2, . . . , Xn) and (Xn, . . . , X2, X1) is the same for any n.

Usage Since i.i.d sequences and ARMA models are time-reversible, we can use time-reversibility
to detect deviations from the Gaussianity-linearity hypothesis. For example, Chen et al (2000) look
at the test statistic

E[sin(ω(Xt −Xt−k))],

and if the value is zero then the process is time-reversible. Other tests rely for example on differences
between backward and forward autocorrelation.
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6.4 Threshold AR models

Consider the change-point model

Xt =

ϕ1Xt−1 + at if Xt−1 < r

ϕ2Xt−1 + at if Xt−1 ≥ r

we call this model the self-exciting threshold-AR model. If Xt−1 is replaced by an exogenous variable
Zt−d, then this model is called threshold-autoregressive (TAR). Using piecewise linear models we can
obtain a better approximation of the conditional mean equation.

Def. (SETAR model)

We define the self-exciting TAR model (SETAR) with threshold Xt−d if

Xt = ϕ
(j)
0 + ϕ

(j)
1 Xt−1 + . . .+ ϕ(j)

p Xt−p + a
(j)
t if γj−1 ≤ Xt−d ≤ γj ,

where j = 1, . . . , k.

Remark In the above model, γj ’s are the thresholds and Xt−d is the threshold variable.

6.4.1 Estimation

Suppose that we have an observed time series X1, . . . , Xn and we fix the order k of the SETAR
model. We alternate a two-step procedure:

› First we assume that the partition Aj and orders pj are known, so that we can use the least
squares procedure to minimize the loss function

S(ϑ) =

k∑
j=1

S(j) =
∑

Xt−d∈Aj
p<t≤n

[
Xt − (ϕ

(j)
0 + ϕ

(j)
1 Xt−1 + . . .+ ϕ(j)

p Xt−p)
]2

› We find the partition Âj such that S(ϑ̂) is minimized.

Otherwise, to determine the autoregressive orders p(j)’s we might use an information criteria such
as BIC, AICC, . . .

Testing for linearity becomes essential to check non-linearity when fitting nonlinear models. In gen-
eral, there are

a) Tests for departure from linear models towards general nonlinear models (less powerful).

b) Tests for departure from linear models towards threshold autoregressive (more powerful).

6.4.2 Smooth Transition Autoregressive models

A generalization of the TAR model is the smooth transition autoregressive model (STAR)
which allows for a smoother transition between the two regimes via a cumulative distribution function
instead of a jump function.
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2022-01-13

A Markov-switching (MS) model changes the rules of the switching regimes from the threshold-
autoregressive model, which are not deterministic anymore. A MS(p) model with two regimes can
be defined as

Xt =

α1 +
∑p
i=1 ϕ1,iXt−i + a1,t if st = 1

α2 +
∑p
i=1 ϕ2,iXt−i + a2,t if st = 2

(12)

where ai,t ∼ IID(0, σ2
i ). The state variable st is unobservable and we assume that it follows a

first-order Markov chain with transition probabilities

P =

(
p11 p12

p21 p22

)
,

and a particular choice of P drives the model behaviour. This is crucially different from the SETAR
model, since the regimes are defined by the Markov chain and not simply determined by the past
values of Xt. Thus, forecast of a Markov-switching model are linear combinations of forecasts
produced by the sub-models.

Estimating a MS model is much harder since the states are not observable, therefore we need a
filtering approach. The log-likelihood can be constructing recursively from some initial conditions
since

fit = f(Xt|st = i,Xt−1, ϑi), i = 1, 2,

and under normality this is a Gaussian density with parameters from Equation (12). Now, we can
write the contribution by marginalizing st as

g(Xt|Xt−1, ϑ1, ϑ2) = f1tρ1t|t−1 + f2tρ2t|t−1, (13)

and Hamilton have shown that the optimal inference and forecast can be determined from the
conditional likelihood in (13).

7.1 Bilinear models

This class of models is not very used/useful even though they are a natural extension of the ARMA
model. A general bilinear model BL(p, q, r, s) can be written as

Xt = c+

p∑
i=1

ϕiXt−i + at +

q∑
i=1

ϑjat−j +

r∑
i=1

s∑
j=1

βijXt−iat−j︸ ︷︷ ︸
bilinear component

,

where at ∼ IID(0, σ2
a). This model is too complex and therefore people usually study the Lower

Triangular Bilinear Model

Xt = c+

p∑
i=1

ϕiXt−i + at +

q∑
i=1

ϑjat−j +

r∑
i=1

s∑
j=1

βijXt−i−jat−i︸ ︷︷ ︸
bilinear component

,

where X has only past values w.r. to a in the bilinear component.
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› These models can model occasional outbursts in time series.

› BL model can have conditional heteroscedasticity, although GARCH-type models are better
in this regard.

› ML procedures are used but asymptotic distribution is unknown.

› Probabilistic properties are often derived using the state-space representation.

7.2 Long-memory models

ARMA models are said to be short-term models, since their autocorrelation function usually tends
to zero with an exponential decrease. Thus the d ∈ {0, 1} parameter in an ARIMA(p, d, q) model
controls the transition from short-memory to infinite memory.

Granger introduced an extension to the ARIMA model by considering d ∈ [0, 1] yielding ARFIMA
models. These models are necessary if we want to take into account series that show memory between
I(0) and I(1) processes.

Properties ARFIMA models can take into account

› Presence of long-range cycles

› Slowly-decaying autocorrelation structures.

There are different definitions of long-memory processes:

1. In the time domain, a long-memory process is such that its autocorrelation function decays
like a power function, i.e. if α ∈ (0, 1) and cρ > 0

ρ(k) = cρk
−α, k −→∞.

2. In the frequency domain, a long-memory process is such that its spectral density is unbounded
at zero, i.e.

f(ω) ∼ cfω−α, ω −→ 0+.

We can define the fractional difference operator using the Gamma function as

(1−B)d =

∞∑
j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Bj ,

and when d ∈ (0, 0.5) the ARFIMA(p, d, q) process is stationary with ρ(k) ∼ k2d−1. When
d ∈ (−0.5, 0) the process is stationary with intermediate memory, although in practice this is never
used. For d ∈ [0.5, 1) the process is mean-reverting even though it is not covariance-stationary.

In the following we will focus on ARFIMA(p, d, q) processes with d ∈ (0, 0.5) which yields the most
interesting type of process.

7.2.1 Estimation

Estimation approaches are mainly divided into two broad classes:
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1. ML estimation, which requires specifying both p and q.

2. Semi-parametric or nonparametric approaches, where we assume that the ARMA component
is relatively unimportant.

One of the best-known method is the semi-parametric GPH estimator introduced by Geweke and
Porter-Hudack and developed by Robinson. This method approximates the spectral density near the
origin,

f(ω) ∼ cf
(
4 sin2(ω/2)

)−d
,

and therefore we can apply the least-squares method to

log l(ωj) = log cf − d log
(
4 sin2(ωj/2)

)
+ uj ,

where uj are i.i.d error terms and ωj are the Fourier frequencies. The problem with this method is
its high variance in the estimates.

7.3 Integer autoregressive (INAR) models

Integer autoregressive (INAR) models can be used to model time series of counts, which are of
particular interest in practice. In some cases, the discrete values can be approximated by Gaussian
models, however for small values we need a more proper model.

Notation We introduce the thinning operator ◦ which substitutes the multiplication operator.
Let α ∈ [0, 1], then we define

α ◦X =

X∑
i=1

Yi, Yi i.i.d r.v.’s with E[Yi] = α. (14)

Typically, Yi’s are assumed to be i.i.d Ber(α), and therefore we have

Yi
iid∼ Ber(α) =⇒ α ◦X|X ∼ Bin(X,α).

The INAR(1) model is defined as
Xt = α ◦Xt−1 + εt,

where α ∈ [0, 1) and εt are i.i.d discrete random variables with mean µε > 0 and variance σ2
ε .

Usually we consider Poisson-distributed errors, but more flexible discrete distributions are possible.

The INAR(1) process is non-linear due to the thinning operator, but it’s a member of the conditional
linear first-order AR models,

E[Xt|Xt−1] = αXt−1 + µε,

V[Xt|Xt−1] = α(1− α)Xt−1 + σ2
ε .

If εt ∼ Pois(λ), then Xt ∼ Pois
(

λ
1−α

)
.
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Generalizing to the INAR(p) is not straightforward and depends on the definition of the thinning
operator, e.g.

Xt = α1 ◦Xt−1 + . . .+ αp ◦Xt−p + εt,

where the thinning operators are applied with independent Yj ’s from (14).

Estimation is simple for Poisson innovations and p = 1, whereas for all other cases we have some
problems. As for the forecast we use the median, since we want an integer value for our predictions
and the mean is usually a real number.
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Sampling Theory
Instructor : prof. P.F. Perri

The idea of this short course is to give a general overview of some concepts and topics in sampling
theory. Some topics are broad, whereas others are relatively technical and more specific. We will
discuss mostly basic topics in estimation of population parameters, stratified sampling and optimal
allocation of strata, inclusion of auxiliary information via regression and calibration, surveys of
sensitive questions, and adjustments for non-response.

References: Tille (2020)

Valliant et al. (2018)

Särndal et al. (2003)
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Lecture 8: Basic concepts in sampling theory
2022-02-09

We will start by considering the estimator of the population total from a finite-size population N .
We are interested in the variance of the estimator which is itself a parameter that depends on the
value in the population. Hence, we are also interested in the estimator of the variance. In sampling
theory we have general three ingredients for designing a sample survey:

1. definition of the estimator ϑ̂;

2. definition of the variance of the estimator V[ϑ̂];

3. definition of the estimator for the variance of the estimator V̂[ϑ̂];

8.1 Estimation of the total

Def. (Population)

We define a population as a finite set of N identifiable units U = {1, 2, . . . , N}.

Identifiability Identifiability is very important, since for instance we are not able to assign a label
to a virtual population.

Fixed size In general we assume N to be fixed, which is an assumption that is not often satisfied
in practice. Consider a population of homeless people, of which we do not know the total number of
units. In this case we use a capture-recapture method to estimate N .

Def. (Population parameter)

A population parameter is a constant describing the salient features of U w.r. to some
variable, Y → ϑ = ϑ(Y1, . . . , YN ).

Remark Note that Yi’s are not random variables, since they represent the value of the variable
for the ith unit.

Example (of some interesting parameters)

Some examples of interesting parameters from a population are

› Total of the survey variable Y, Y =
∑N
i=1 Yi

› Mean of Y, Y = Y/N .

› Ration between variables, R = Y /X

Def. (Sample)

A sample s = {i1, . . . , in} is a subset of U that is selected using a probabilistic mechanism.

Def. (Inclusion probability)

The inclusion probability of a unit i is the probability of unit i being included in the
sample before running the sampling procedure.
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Remark For a probabilistic sampling, all units must have a positive probability of being included.
If even one unit has a null probability of being sampled, then the procedure is a non-probabilistic
sampling scheme.

Remark When we have non-probabilistic surveys our inference in uncertain, unless we use some
corrections to bring them back to being similar to the population.

Example (Online surveys)

Online surveys exclude people that do not have internet connection from surveys, hence they
have no possibility of being selected in a sample. This is not a probabilistic sample, and care
should be put in the inferential conclusions.

Def. (Sampling space)

The sampling space is the set S of all possible and distinct samples which can be selected
from U using a selection procedure.

Def. (Sampling design)

A sampling design is a real-valued set function

p : S −→ [0, 1]

s 7−→ p(s)

such that p(s) ≥ 0 and
∑
s∈S p(s) = 1.

Duality In general we have a duality between p(s) and the selection scheme : if we assign a
probability to each sampling design, there is an algorithm to obtain the selection of a single unit,
and vice versa (Hedayat and Sinha, 1991, p. 5). Hence,

p(s) ⇐⇒ selection scheme

Def. (Estimator)

An estimator is a function of the sampled observations ϑ̂(y1, . . . , yn).

Def. (Sampling distribution)

The sampling distribution of ϑ̂ is the probability of ϑ̂ attaining each of these values

P(ϑ̂ = c) =
∑
s:ϑ̂=c

p(s).
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Remark The sampling distribution of ϑ̂ is defined by the sampling design that we choose. Indeed,
we observe that

E[ϑ̂] =
∑
s∈S

p(s)ϑ̂(s)

V[ϑ̂] =
∑
s∈S

p(s)
[
ϑ̂(s)− E[ϑ̂]

]2
MSE(ϑ̂) = E[ϑ̂− ϑ]2 =

∑
s∈S

p(s)
[
ϑ̂(s)− ϑ

]2
Approaches in model surveys

1. For the reasons denoted above, in this course we will take the design-based approach to
sampling survey.

2. In model-based surveys we have instead a superpopulation modelled by a multivariate random
variable, from which we find our population.

3. In model-assisted approach we combine the two approaches to get a mixed approach.

Theorem 3 (Probability rules)

Let A,B be sets, then

(A ∪B)c = (Ac ∩Bc), (A ∩B)c = (Ac ∪Bc).

P(A ∪B) = P(A) + P(B)− P(A ∩B)

If the Ai’s are mutually exclusive events, then

P
(⋃
i∈I

Ai

)
=
∑
i∈I

P(Ai).

If the Ai’s are independent events, then

P
(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

Example (Bank of Italy)

Ignoring the sampling design and using standard MLE techniques under i.i.d assumptions
yields wrong inferences. This is true for datasets collected by the Bank of Italy, which uses
a very complicated sampling design in order to carry out their sample surveys.

Let Ai ⊆ S = {s ∈ S : i ∈ S}, then the inclusion probability of first order can be written as

P(i ∈ s) = πi =
∑
s∈Ai

p(s), i = 1, . . . , N.
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Alternatively, let δi be the indicator of whether the ith is included in the sample, then

δi =

1 if i ∈ s
0 if i 6∈ s

then δi ∼ Ber(πi) and
πi =

∑
s∈S

p(s)δi = E[δi]

Finally, let Aij ⊆ S = {s ∈ S : (i, j) ∈ S} be the set of samples in which both i and j appear, then
the joint probability of inclusion is

πij =
∑
s∈Aij

p(s) = E[δiδj ].

If a sample of size n is drawn with replacement, then we have that the probability of inclusion πi
and πij are, respectively,

πi = 1− (1− Pi)n,

πij = 1− (1− Pi)n − (1− Pj)n + (1− Pi − Pj)n,

where Pi is the selection probability of unit i at each selection draw.

Proof.
. . .

Properties of πi and πij

Suggested readings: Valliant et al. (2018)

Pfeffermann (1993)

Def. (Effective sample size)

We define ν(s) := “# of different units in the sample” as the effective sample size of the
sample. In general, ν(s) 6= n if the sampling is done with replacement.

Let p(s) be a design, n(s) the sample size, ν(s) be the effective sample size and ν = E[ν(s)], then
we have that

N∑
i=1

πi = ν,

N∑
i=1

∑
j 6=i

πij = V[ν(s)] + ν(ν − 1).

Proof.
Slides
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If the sample is without replacement (WOR), then we have

n(s) = n = ν(s) = ν,

hence the previous results become
N∑
i=1

πi = n,

N∑
i=1

∑
j 6=i

πij = n(n− 1)

moreover, ∑
j 6=i

πij = πi(n− 1).

8.2 Selection procedures

In general, simple random samples where every unit has the same inclusion probability are not used
when designing sample surveys.

Example (Shoplifting)

Suppose we are interested in the total number of theft and total value of theft from the shops
in a city. We have different strategies

a) Assign the same probability to each shop.

b) Give to the shop a different probability, since we think that the larger are the shop
then the larger will be the number of thefts. Then we need to find a proxy variable
that is correlated to the number of thefts.

In this example, we use

πi ∝ A, A := “floor area of the shop”,

hence the sample will contain a lot of large shops and will not be representative of the
population.

Statistical analysis provides us the tools to deal with this situation by weighting the estimator so
that the estimator is unbiased for the total.

› Sample units proportional to a measure of their size

› The size X is strongly correlated with Y (probability proportional to sample size)

› Xi must be known in advance for all i ∈ U .

› Pi = Xi/X, where X =
∑N
i=1Xi

› We hope to have a more accurate estimator than by using simple random sampling

› The final estimator ϑ̂ will be a weighted average so that the bias is removed.
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8.2.1 PPS with replacement (PPSWR)

A PPS with replacement (PPSWR) can be drawn using different methods.

Cumulative total method Suppose Xi are general numbers, then we can use the following steps
to sample with replacement proportionally to size:

1. Write down the cumulative totals for the size Qi =
∑
j≤i Pj

2. Choose a random number r ∼ Unif(0, 1)

3. Select the ith population unit if Qi−1 < r ≤ Qi.

4. Repeat until the size of the sample equals n.

Lahiri’s method To avoid the calculation of the cumulative sum (not a problem anymore), we
can use

1. Select i such that 1 ≤ i ≤ N .

2. Select a j such that 1 ≤ j ≤ max{X1, . . . , XN}.

3. If j ≤ Xi, the ith unit is selected, otherwise the pair (i, j) is rejected and another pair is chosen
by repeating steps (1) and (2).

8.2.2 PPS without replacement (PPSWOR)

Samples without replacement is more complicated than sampling with replacement, and more than
a hundred methods have been proposed. The probability πij is very difficult to express in a closed
form when the sample size is greater than 2 or 3.
Methods are useful if they satisfy some properties, i.e.

› πi = nPi, calculations are simplified;

› πij > 0 yields unbiased estimator of the variance;

› πiπj − πij ≥ 0 yields nonnegative variances of the estimators.

Yates-Grundy (n = 2)

1. Select first unit with probability Pi = Xi/X

2. Modify the total size X and select the second unit after removing the ith unit.

The inclusion probabilities become

πi = Pi

(
1 +

∑
j 6=i

Pj
1− Pj

)

πij = PiPj

( 1

1− Pi
+

1

1− Pj

)
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Proof.

πi = P
(
(i1 = i) ∪ (i1 6= i, i2 = i)

)
= P(i1 = i) +

∑
j 6=i

P(i1 = j)P(i2 = i|i1 = j)

= Pi +
∑
j 6=i

Pj
Xi

X −Xj

= Pi

(
1 +

∑
j 6=i

Pj
1− Pj

)

Exercise Try to calculate the probabilities for a sample of size n = 3.

Hartley-Rao-Cochran Allows us to select a sample of size n without heavy computations.

1. Partition the population in n groups such that the sizes are N1, . . . , Nn and
∑n
i=1Ni = N .

2. From each group select a single unit using the CTM or Lahiri’s method.

In general the method depends on the way we split the population.

Midzuno-Sen Widely used in practice

1. Select the first unit using PPSWR

2. The remaining units are selected with simple random sampling, P(ik = i) = 1/(N − 1).

The inclusion probabilities are given by

πi = Pi
N − n
N − 1

+
n− 1

N − 1

πij =
n− 1

N − 1
. . .

=⇒ Pi =
(N − 1)πi − (n− 1)

N − n

8.2.3 PPSWR and Hansen-Hurwitz estimator

Consider a population U = {1, . . . , N} and we have Yi variable and Xi auxiliary variable for each
population. Let (yi, pi) be the values of the study variable and selection probability for each unit;
then, an estimator Ŷ can be constructed as

Ŷ =

n∑
i=1

diyi =

N∑
i=1

diYiγi,

where

› di is a design-based weight to make the estimator unbiased.

› Yi is the constant value of each unit i.
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› γi is the number of times the ith population unit appears in the sample,

γi ∼ Bin(n, Pi).

Hence, the estimator is such that

E[Ŷ ] =

N∑
i=1

diYiE[γi] = n

N∑
i=1

diYiPi =

N∑
i=1

Yi,

which is unbiased for Y if di = 1
nPi

, and thus we obtain the Hansen-Hurwitz estimator (Hansen
and Hurwitz, 1943)

ŶHH =
1

n

n∑
i=1

yi
pi
.

We have that

V[ŶHH ] =
1

n

N∑
i=1

Pi

(
Yi
Pi
− Y

)2

,

which can be unbiasedly estimated by

V̂[ŶHH ] =
1

n(n− 1)

n∑
i=1

(
yi
pi
− ŶHH

)2

.

Remarks

1. V[ŶHH ] = 0 ⇐⇒ Pi = Yi/Y for all i.

2. If Yi ∝ Xi, then V[ŶHH ] is low, and V[ŶHH ] = 0 when Yi = βXi.

3. If Yi ∝ α+ βXi, then V[ŶHH ] ∝ α.

Confidence intervals We have that ŶHH → N (Y,V[ŶHH ]) , hence an approximate confidence
interval for Y is

. . .

SRSWR If Pi = 1/N we obtain the simple random sampling with replacement, and this is called
the expansion estimator.

Efficiency In general, ŶHH is more efficient than the simple Ŷ if

Cov
(Y2

X
,X
)
> 0.

8.2.4 PPSWOR and Horvitz-Thompson estimator

With the same reasoning we can build the Horvitz-Thompson estimator (Horvitz and Thompson,
1952) using

ŶHT =

n∑
i=1

yi
πi

=

N∑
i=1

Yi
πi
δi,

where the design weights are di = 1/πi.
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We have that δi ∼ Ber(πi), hence E[δi] = πi, V[δi] = πi(1− πi), and Cov(. . .)

E[ŶHT ] = Y

V[ŶHT ] =

N∑
i=1

Y 2
i

π2
i

πi(1− πi) +

N∑
i=1

∑
j 6=i

Yi
πi

Yj
πj

(πij − πiπj).

We can extend the sampling version of the estimator in order to show that the estimated variance
V̂[YHT ] is unbiased.

The Yates-Grundy variance can be applied when the sample size n is fixed in advance, and

V̂[ŶHT ] =

n∑
i=1

∑
j>i

(
πiπj − πij

πij

)(
yi
πi
− yj
πj

)2

.

Remark 1 πij > 0 for all i, j is required for unbiasedness of V̂[ŶHT ].

Remark 2 πiπj− .. ≥ 0 is required so that. . . Hence, the usefulness of the Midzuno-Sen procedure.

In this case, we also see that a high value of intercept increases the value of the variance of the
Horvitz-Thompson estimator.

Problem A big problem in the HT estimator is calculating the second-order probabilities, unless
we make some approximations. We usually approximate using

πij = πiπj
ci + cj

2
,

where ci and cj are appropriately chosen by different authors. In general, it has been proven (Raj,
1968) that if for all i, j

πij >
n− 1

n
πiπj =⇒ V[ŶHH ] > V[ŶHT ].

Sample size calculation The sample size calculation is usually dependent on various considera-
tions

1. the budget of the survey;

2. the individual cost of surveying one unit;

3. the accuracy required for statistical inference from the survey data.

Assuming that the sample is being selected by SRSWOR and the parameter to estimate is the
population mean Y . Under SRSWOR, the expansion estimator is unbiased

y =

n∑
i=1

yi/n,
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which has variance V[y] = 1−f
n S2

y , with f = n/N . Assume that V0 is a desirable value for the
standard error of y, then we constrain

V[y] =
1− f
n

S2
y = V 2

0 ,

and solving for n we obtain

n0 =
S2
y

V 2
0 + S2

y/N
.

The problem is that S2
y is usually unknown, unless we can produce a guess for the variance driven

by e.g. census data, previous surveys, etc. . . Otherwise we can conduct a small pilot sample survey
only to estimate S2

y .

Another way to proceed is to fix the margin of error using the confidence interval,

P(|y − Y | ≤ e) = 1− α,

hence solving for n using the normal distribution confidence intervals,

n =
z1−α2 S

2
y

e2 +
z1−α

2
S2
y

N

.

In practice We usually have multiple variables to survey, and each variable has to have different
criteria to satisfy. In this case, we might focus on one or two variables that are of primary interest.

8.3 Stratified sampling

Applying a stratified sampling approach might yield more precise estimates of population parameters,
when the survey variable takes different mean values in different subgroups of the population.

Def. (Stratification)

Stratification means dividing the population units into H subpopulations called strata
according to one or more variables.

Remark Strata are formed so that each unit within the stratum is as much similar as possible w.r.
to the target variable Y. We do so by stratifying using other auxiliary variables X1, . . . ,Xk, which
are correlated with Y.

Pooling From each stratum an independent sample of size nh is selected with sampling designs
which might differ across strata. Estimates from each strata are pooled to obtain overall population
estimates.

1. This reduces the possibility of obtaining a “bad” sample, hence it might produce a better
estimate of the parameters.

2. We can get estimates within each subgroup, hence we can find confidence levels for the mean
of each strata.
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3. More convenient to administer and might result in a lower cost for the survey.

Stratification is a complex topic since we need to prune the number of stratification variables, select
how many strata we want to use, which sampling design to adopt in each stratum, and how many
units to sample from each strata.

An unbiased estimator for the population total Y is

ŶSTR =

H∑
h=1

Nhyh = N

H∑
h=1

Whyh,

provided that nh ≥ 1 for each h. The variance of the estimator is given by the sum of the variances,
since the estimators are independent across the strata,

V[ŶSTR] =

H∑
h=1

N2
hV[yh] = N2

H∑
h=1

W 2
H

1− fh
nh

S2
h.

V̂[ŶSTR] =

H∑
h=1

N2
hV[yh] = N2

H∑
h=1

W 2
H

1− fh
nh

s2
h.

In general, the lower S2
h, the higher will the precision of the estimate be. Hence, we are looking to

construct strata which are highly homogeneous within themselves.

We want to determine the allocation of sample sizes nh in order to minimize the variance of the
estimator,

V[ŶSTR] = N2
H∑
h=1

W 2
hS

2
h

nh︸ ︷︷ ︸
minimize

−
H∑
h=1

NhS
2
h,

under the constraint given by the total cost Ct = C0 + Cv, where

C0 = fixed

Cv =

H∑
h=1

chnh,

where ch is the cost of surveying one unit in stratum h.

min
n

H∑
h=1

W 2
hS

2
h

nh

s.t.
H∑
h=1

chnh = Cv,

and by using the Lagrange multiplier solution we obtain the optimal sample allocation as

nh = n
WhSh/

√
ch∑H

h=1WhSh/
√
ch
.
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In general, the higher the variability (Sh) within the strata and the larger the strata is (Wh), the
more units we need to sample from it. Higher cost (ch) means a lower number of units.
In many cases, ch = c and the optimal allocation reduces to the Neyman allocation,

nh = n
WhSh∑H
h=1WhSh

,

which yields an expression for the variance of the estimator,

Vopt[ŶSTR] = N2

[
. . .2

. . .
− . . .

. . .

]
.

Finally, if Sh = S in all strata, the Neyman allocation reduces to the proportional allocation,

nh = n · Nh
N
.

In general,
V[ŶSTR] ≥ Vprop[ŶSTR] ≥ Vopt[ŶSTR].
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Lecture 9: Auxiliary information in estimation
2022-02-10

Introduce and discuss the idea of including auxiliary information in the estimation stage. Previous
lecture was auxiliary information in the design stage, today in estimation. Information to include
information in the estimation stage is less restrictive than before: we only need to know the value
of the mean in the whole population, instead than the value of auxiliary variables for each unit in
the population.

9.1 Ratio method

Suppose X is auxiliary whose total is known in advance, Y the variable of interest such that
Cov(X ,Y) > 0. Let Ŷ , X̂ be unbiased estimators under a generic sampling design p(s) and de-
fine the estimated ratio as R̂ = Ŷ /X̂.

Def. (Ratio estimator)

We define the ratio estimator between the two variables X and Y as

ŶR = Ŷ
X

X̂
= R̂X,

Remark The quantity X/X̂ is called adjustment factor which tends to reduce the variability
of Ŷ around Y .

Figure 5: Intuition behind the ratio estimator ŶR: since Cov(X,Y ) > 0, and we know X in
advance, X̂ gives information whether we also overestimated/underestimated Y . Hence, ŶR
pulls Ŷ towards the regression line.
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Bias In general, ŶR is biased for Y and its bias is

E[ŶR − Y ] = −Cov(R̂, X̂).

Proof.

Cov(R̂, X̂) = E[R̂X̂]− E[R̂]E[X̂]

= E[Ŷ ]− E[R̂]X

= Y − E[ŶR]

= −B(ŶR)

In general, it can also be shown that the bias is negligible when the sample size is large enough.

Consider now the mean squared error of ŶR, MSE(ŶR), then with the first-order approximation of
the MSE we have

MSE(ŶR) ≈ V[ŶR]
Taylor

= V[Ŷ ]− 2RCov(X̂, Ŷ ) +R2V[X̂].

Proof.
Using the Delta method we have that if δy = (Ŷ − Y )/Y and δx = (X̂ −X)/X, then

ŶR = Ŷ
X

X̂
= Y (1 + δy)(1 + δx)−1

Considering the Taylor expansion of 1/(1 + δx)−1 in δx = 0, we have

ŶR = Y (1 + δy)(1− δx + δ2
x − δ3

x + . . .)

= Y (1 + δy − δx + δ2
x − δyδx + . . .)

≈ Y (1 + δy − δx).

Hence, by calculating the MSE we obtain

MSE(ŶR) ≈ Y 2E[(δy − δx)]2 = V[Ŷ ] +R2V[X̂]− 2RCov(X̂, Ŷ ).

Improvement Considering the expression of the MSE, then we obtain an improvement over the
estimation with Ŷ if

V[Ŷ ] ≥ V[ŶR] ⇐⇒ ρ(X̂, Ŷ ) >
1

2

C(X̂)

C(Ŷ )
,

where C(·) is the coefficient of variation, C(Z) = σz/µz.
Since ρ(X̂, Ŷ ) ∈ [0, 1], this condition is never satisfied if

C(X̂) > 2C(Ŷ ).
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Hence, if we choose X which is characterized by a high variability, then we expect our estimator to
be less efficient than Ŷ .

The above expression can be generalized to different sampling schemes, hence with different esti-
mators Ŷ for which we know the expression of V[Ŷ ] and V[X̂]. Now, we can write the covariance
between the HH and HT estimators,

Cov(X̂, Ŷ ) =

. . . for HH

. . . for HT

which can be particularized to simple random sampling using the expansion estimator.
The ratio estimator works well when

Yi = βXi + ε, ρxy > 0,

whereas if ρxy < 0 then the product estimator can be used,

ŶP = Ŷ X̂/X.

Note that the regression does not have an intercept : in general, having an intercept α 6= 0 is a bad
property in sampling schemes.

Note

The regression estimator Y = α + βX + ε is the best estimator we can use in terms of
estimation of Y . The ratio estimator is still used today, and the justifications for its use are
not very convincing apart from the need to publish.

9.2 Regression estimator

The idea is to improve an estimator for Y using the linear regression on X, with the idea that
usually X is easier to measure than Y .

1. Xi’s measured in the sample

2. Yi’s measured in the sample

3. X total in the population

Consider a linear combination
Ŷ ∗ = aŶ + bX̂ + cX,

and determine the coefficients a, b, c such that the estimator is unbiased for Y . Imposing unbiasedness
yields the following construction,

E[Ŷ ∗] = Y =⇒ a = 1, c = −b =⇒ Ŷd = Ŷ + c(X − X̂).
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Interpretation We adjust the estimate of Ŷ through a quantity which is proportional to the
known estimation error X − X̂.

In order to determine c, we consider the variance of the difference estimator,

V[Ŷd] = V[Ŷ ] + c2V[X̂]− 2cCov(Ŷ , X̂),

which is similar to the ratio estimator as before. The above quantity is minimized by setting

ĉ = argmin
c

V[Ŷd] =
Cov(Ŷ , X̂)

V[X̂]
,

which is the regression coefficient between Y and X.

Def. (Regression estimator)

We define the regression estimator for Y as

Ŷreg = Ŷ + β(X − X̂),

which has variance given by

V[Ŷreg] = V[Ŷ ]
(
1− ρ2(Ŷ , X̂)

)
.

Improvement In general we observe that V[Ŷ ] ≥ V[Ŷreg], hence this is always better or equal
than the estimator without regression.

Ratio estimator This is a better estimator than the ratio estimator, which can be worse than Ŷ
for some values of C(X). The two estimator can be equal in terms of efficiency if

MSE(ŶR)−MSE(Ŷreg) = V[X̂](R− β)2 ≥ 0,

and this holds when the intercept is null, Yi = βXi.

9.3 Optimal use of multi-auxiliary estimation

We want to consider the best possible estimator for Y under auxiliary information.

Notation X = (X1, . . . ,Xp)> auxiliary variable, for which we both know X and S. We also
define v = (x, s)>.

Consider a wide class of estimators
yg = g(y,v),

which satisfies some regularity conditions (diana perri 2007). Expanding yg sing a

yg ≈ y + (v − V )>gv,
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and show that the MSE is

MSE(yg) ≈
1− f
n

(S2
y + g>v Σxxgv + 2g>v Ωyz),

which is minimized over gv, yielding

g∗v = argmin
gv

MSE(yg) = Σ−1
zz Ωyz,

with βy· are the partial regression coefficients.

The best estimator in the class is the unbiased multivariate regression estimator, given by

yreg = y + (X − x)>βyx + (S − s)>βyδ,

using the partial regression coefficients of eachXi, and not the total estimator of the linear regression.

Estimators for instance of the form

ỹ = y + b1(X1 − x1) + b2(X2 − x2),

where the bi’s are the total regression coefficients of Y on X, and not the partial coefficients, are
not optimal for estimating Y .

9.4 Regression estimator in stratified sampling

We now try to generalize the regression estimator by assuming that the total Xh is known for each
stratum h = 1, . . . ,H. The regression of Y on X produces different regression coefficients across the
strata, and we can obtain the regression estimator within each strata

Ŷreg,h = Ŷh + βh(Xh − X̂h).

Def. (Separate regression estimator)

We define the separate regression estimator as

Ŷ (s)
reg =

H∑
h=1

Ŷreg,h.

We can calculate the mean squared error in terms of the covariances and variances inside each
stratum.

Estimation When we do not know the value of the variables Xh inside each strata, we can
construct another estimator based on the estimation

Ŷstr =

H∑
h=1

Ŷh, X̂str =

H∑
h=1

X̂h,
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and calculate the regression coefficient

βc = Cov(Ŷstr, X̂str)/V[X̂str].

The combined estimator is the regression estimator when applied to Ystr,

Ŷ (c)
reg = Ŷstr + βc(X − X̂str fs),

and the calculable first-order MSE approximation is valid if nh is large enough in each strata.
In general, we observe that the separate estimator is always equal or better than the combined
estimator,

V[Ŷ (c)
reg ]− V[Ŷ (s)

reg ] = N2
H∑
h=1

ah(bh − bc)2 ≥ 0,

and it is equivalent whenever bh is constant in all strata.

9.5 Regression-type estimators and missing data

Another contribution is to study the regression-type estimators whenever we are in the context of
missing data. Let s be a SRSWOR of size n drawn from U to estimate Y . Assume now that the
yi’s can be observed only on a subset of sR ⊂ s of size nr < n, and that auxiliary information X is
available, for which X might be known or not.

Define xn to be the mean on all the sample, yr and xr to be the mean values on the observable
units, and b = sxy/s

2
x computed on sR.

The best estimators for Y are (Diana perri 2010) are the following:

y1 = yr + b(X − xn)

y2 = yr + b(X − xr)

y3 = yr + b(xn − xn)
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Randomized response theory (RRT) is a technique for tackling sensitive and confidential topics such
as gambling, alcoholism, sexual abuse, drug addiction, tax evasion, . . .
The idea is

a) Randomized device is used to hide the answers in

b) Since the question is kept random, both the researcher and the interviewer are unaware of
which question has been answered.

to sample indirect questions about the topic from a bigger pool of observation, and an estimator is
constructed such that the quantities of interest are appropriately estimated.

10.1 Randomized response theory

Example (Drug use)

Question is “have you ever used drugs?”, and the interview proceeds as follows:

1. A deck of cards is considered as a randomizer

2. On each card is written one of two statements “I used drugs” or “I did not use drugs”
with proportions p and 1− p.

3. Respondents are asked to select a card and report yes or no to match the question,
without revealing which question they have drawn.

An unbiased estimator of πA is

π̂W =
λ̂− (1− p)

2p− 1
, λ̂ =

# “yes” response in s
n

.

In the above example, we have an unbiased estimator which is however less efficient than the esti-
mators with the direct method. However, this method is useful to improve the quality of the data
with respect to the direct method.

Problem In the above example, the answer no to the negative question is itself a

Unrelated question models We associate to the sensitive question a completely unrelated ques-
tion, for instance

a) “Have you ever used drugs?”

b) “Do you like soccer?”

With this method we have an easy estimator for the second question, using a second sample, and
we can estimate the proportion as

. . .
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Perturb the response on Y and an auxiliary variable X using W,U, T,H scrambling variables
with known distributions, and the response becomes a scrambled version of the true values,

S = ϕ(Y ;W,U), R = φ(X;T,H).

Mechanism n individuals run a Bernoulli trial with probability p: if success, the respondent
provides the true X and Y , whereas if there isa failure we obtain R and S. The distribution of the
response is

(Z, V ) =

(Y,X) with probability p

(S,R) with probability 1− p

We can obtain an efficient estimator for Z by augmenting with V , and the procedures based on
auxiliary information are at least as efficient as the analogous procedures defined without them.

10.2 Calibration

A more general approach to incorporate auxiliary information into the estimates is based on the
idea of calibration, introduced by Deville and Särndal 1992. With this method we can eliminate
many restrictions of the other estimators. We replace the estimator using

Ŷc =
∑
i∈S

wiyi,

where the wi’s are determined to minimize the distance to di = 1/πi, while respecting the calibra-
tion equation

∑
i∈S

wixi = TX .

There are several distance functions, and among them the most used is the χ2 distance

GS(w, d) =
∑
i∈S

(wi − di)2

2digi
,

where the gi’s are known positive weights unrelated to di chosen by the researcher. This choice yields
the calibration estimator of the total of Y,

Ŷc = ŶHT + (T − X̂HY )>B̂,

where

B̂ =

(∑
i∈S

digixix
>
i

)−1∑
i∈S

digixiyi,

which is called GREG estimator. Other choices of distance are possible, but asymptotically they
are equal to the χ2distance functions.

When the relationship between X’s and Y is not linear, the method can be generalized using a
model calibration approach.
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Def. (Superpopulation)

We assume that the population under study is generated by a stochastic mechanism, where
Y1, . . . , YN are a realization of a random variable Y = (Y1, . . . , YN )> whose distribution
defines a superpopulation.

A superpopulation model specifies certain features of the generating process, i.e. we can specify

a) the first moments of the marginals;

b) the correlation between each Yi and Yj ;

c) the functional form of the superpopulation, Y → f(Y |ϑ).

We assume that there is a relationship between X and Y of the form

Eξ[Yi|xi] = µ(xi,ϑ), Vξ[Yi|xi] = σ2v2
i ,

and this model includes both LM’s and GLM’s.

The idea is not to calibrate w.r. to the value of X, but w.r. to the fitted model.
We want an estimator

Ŷmc =
∑
i∈S

wiyi,

where wi are the weights obtained as a solution of the minimization problem

min
∑
i∈S

(wi − di)2

2digi

s.t.
∑
i∈s

wi = N

∑
i∈S

wiµ(xi, ϑ̂) =
∑
i∈U

µ(xi, ϑ̂).
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cluster sampling is a complex design, and the complexity increases as the hierarchy becomes deeper.
We will mostly focus on two-stage cluster design, which is the simplest possible cluster design.

11.1 Cluster sampling

The PPS sampling framework requires a list of elementary units from the population that we want
to sample. In many cases, however, the list is either not available or unfeasible/time consuming to
produce. Hence, we prefer to apply a cluster sampling procedure.

1. Split the population in groups and compile a list of primary sampling units.

2. A sample of clusters is selected from the list, according to a sampling design (usually PPS).

If after sampling a cluster

a) all elementary units from the cluster are included, we have single-stage cluster sampling ;

b) a sample of elementary units from the cluster is selected, we have two-stage sampling ;

c) other more complicated are multi-stage sampling.

Notation The population U = {1, . . . , N} is made by the set of clusters (N PSUs). Within each
cluster i, we have Mi SSUs.

We define the cluster inclusion probabilities of first and second order, respectively, by πi and πik.
Moreover, we define the inclusion probabilities for the jth and lth second-order units as πj|i and πjl|i,
conditionally on the fact that the ith cluster has been selected. The first-order inclusion probability
of the jth SSU is therefore

π̃j = πiπj|i,

and the second order inclusion probability is

π̃jl =

πiπjl|i if j, l ∈ ithPSU
πikπj|iπl|k if j ∈ ithPSU and k ∈ lthPSU

The HT estimator for the total Y under cluster sampling is

ŶHT =

n∑
i=1

mi∑
j=1

yij
π̃j

=

n∑
i=1

1

πi

mi∑
j=1

yij
πj|i

=

n∑
i=1

Ŷi·
πi︸ ︷︷ ︸

cluster ŶHT ’s

.

The HT estimator can be shown to be unbiased with the tower rule of the expectation,

E[ŶHT ] = E2

[
E1[ŶHT ]

]
= E2

[ n∑
i=1

E1[Ŷi·]

πi

]
= Yi.
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As for the variance of the HT estimator, we need to consider the total variance,

V[ŶHT ] = V1[E2[ŶHT ]] + V2[E1[ŶHT ]]

= V1

[ n∑
i=1

Yi·
πi

]
+ E1

[ n∑
i=1

V2[Ŷi·]

π2
i

]
We can see that the quantities involved are:

V2[Ŷi·] =

Mi∑
j=1

Mi∑
l 6=j

(π̃j π̃l − π̃jl)
(
Yij
π̃j
− Yil
π̃l

)2

.

11.2 Nonresponse

In a perfect world, we expect that all units that have been selected and are subject to an interview
will provide answers without measurement error, i.e. they are completely honest in their responses.
Hence, all statistical variability is derived from the sampling error induced by the sampling design.

Def. (Nonresponse)

Without loss of generality, we define nonresponse as any kind of lack of information from
the surveyed unit.

Problems When nonresponse is present in a significant way, the researcher loses control on the
sampling mechanism.

We can specialize nonresponse as

1. Unit nonresponse: the survey unit does not provide any information at all, meaning that the
questionnaire form remains completely empty

2. Item nonresponse: the participant to the survey answers only some questions, leaving out more
personal and sensitive topics.

The main problem of nonresponse is that estimates may be affected by a non-negligible bias: some
groups are overrepresented whereas other are underrepresented =⇒ selective nonresponse.

In order to investigate the impact of non-response, we need to incorporate it in the sampling theory.
We can follow two approaches:

1. Fixed response model : we partition the population into two groups UR of respondents and
Ur

2. Random response model : every unit i ∈ U has an unknown probability to participate if
selected in the sample. We define the propensity score of i as

qi|s = qi,

and if Ri is the event of response we have

P(Ri = 1|s) = qi.
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The bias in estimating the mean of the population is

B(ŶR) = E[Y R]− Y =
NR
N

(Y R − Y R),

and we can observe that this quantity is driven by two factors:

› difference Y R − Y R between the two groups;

› the relative size NR/N of the non-response group.

Hence, we have identified two ways of reducing the bias. Since in general we have no data for non-
respondents, there is no way to evaluate Y R − Y R, and the only way to combat nonresponse is to
employ ad hoc survey procedures.

Sampling Note that the bias does not depend on the size of sR.

11.2.1 Horvitz-Thompson and underestimation

In general, the HT estimator produces underestimation in presence of nonresponse, since

ŶHT =

N∑
i=1

Yi
πi
δiRi,

and its expected value is

E[ŶHT ] = Ep
[
Eq[ŶHT ]

]
= Ep

[ N∑
i=1

Yi
πi
δi Eq[Ri]︸ ︷︷ ︸

qi

]
=

N∑
i=1

Yi
πi

Ep[δi]︸ ︷︷ ︸
πi

qi =

N∑
i=1

Yiqi ≤ Y.

From the above expression, we can try to remove the bias by introducing weights wi,

Ŷ ∗HT =

N∑
i=1

wi
Yi
πi
δiRi,

and the necessary weights are

wi =
1

πiqi
.

In general, we can find that we have a price to pay in terms of accuracy when accounting for
non-response:

V[Ŷ ∗HT ] = V[ŶHT ] +

N∑
i=1

Y 2
i

ϕi
(1− qi) ≥ V[ŶHT ].

The problem of the adjusted HT estimator is that qi is unknown in practice.

Propensity score regression The solution is to replace qi by some estimated response propensity,
for instance using a logistic regression with auxiliary variables

qi = P(Ri = 1|Xi).

Weighting-class adjustment Another approach is to apply the weighting-class adjustment : we
partition unit in C classes, such that within each class we assume respondents and non-respondents
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to be similar, and we are able to estimate

q̂c =

∑
j∈sR,c dj∑
j∈sc dj

11.2.2 Selective nonresponse

Def. (Selective nonresponse)

Nonresponse is selective if some groups in the population are under- or over-represented in
the sample, and if these groups behave differently from the characteristics being sampled.

Problem Available data is useless for this aim, since they are only available for the respondents
and for non-respondents.

Solution We can employ auxiliary variables assuming that these variables are known for each unit
of the population.

Assumptions We need assumptions on the mechanisms of non-response and the relationship
between variables involved. In particular, we can assume

1. Missing completely at random (MCAR): qi ⊥⊥ (Yi,Xi) and the respondents are representative
of the population, hence the estimates are unbiased. In this case we can analyze only the units
with complete data, and the resulting estimators will be unbiased for the population quantities.

2. Missing at random (MAR): qi ⊥⊥ yi|Xi, hence we can apply weighting techniques based on xi
to improve the estimate of the quantity of interest.

Example (MAR)

The response probability depends on age, sex, . . . which we know for each respondent
without knowing the value of yi. Hence, we can apply a GLM to estimate the probability
of inclusion q̂i for each unit.

3. Missing not at random (MNAR): the response probability only depends on yi and cannot be
explained by the Xi’s.

Example (MNAR)

Individuals may be more reluctant to disclose the true value of their income depending
on whether it is high or low.

The problem is that we cannot distinguish between MNAR and MAR, however we can distinguish
between MCAR and MAR by fitting a logistic model to predict the observed probabilities.
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12.1 Introduction

In Bayesian statistics, the prior distribution introduces extra-experimental information in the process
of statistical inference for the parameters of interest. For this reason there is an ongoing and vivid
debate among “subjective” and “objective” Bayesian statisticians, although we will not discuss it at
the moment.

Example

Let y = (y1, . . . , yn)
iid∼ N(ϑ, 1) and two people have different priors:

a) Ann has prior ϑ ∼ N(µ, τ2).

b) Bob has a more diffuse prior ϑ ∼ N(µ, 1).

Ann. Ann can compute her posterior distribution as

ϑ|y ∼ N(µ∗, τ2∗),

where

µ∗ = Wµ+ (1−W )y, τ2∗ =
τ2

nτ2 + 1
,

and W = 1/(nτ2 + 1).

Bob. On the other hand, Bob cannot have a closed-form expression for his posterior, since

πB(ϑ|y) ∝ 1

1 + (ϑ− µ)2/τ2
exp

{
−n

2
(y − ϑ)2

}
,

for which he cannot compute the normalizing constant.

From a historical perspective, before MCMC methods were available the statistical practice was
skewed towards frequentist statistics.

› Frequentist methods are based on optimization of functions.

› Bayesian methods are based on optimization of decision rules, and it is performed through
expectation with respect to posterior probability density functions.

› Until the 80’s of the last century, optimization was a much easier mathematical task than
integration.

› The vast majority of applied statistics was performed in a frequentist way, more suitable for
standardized statistical packages.

› Bayesian thinking was merely a philosophical disturbance.

› The usual answer was “We would like to be Bayesian but we have no prior!”

The appearance of simulation methods completely turned around the story. Statisticians realized
the huge potential of Markov Chain Monte Carlo methods in 1990 with the Gelfand & Smith JASA
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paper. In particular, applied Bayesian nonparametric methods, historically too difficult to perform,
became often easier than standard parametric methods.

Consequence 1. A first consequence of this shift in statistical practice was that many applied
researchers have started to use Bayesian methods, as an alternative and convenient tool to provide
estimators, standard errors, etc. . .

Consequence 2. The choice of the prior is often based on convenience and manageability rather
than an important piece of the statistical model.

12.1.1 Starting point

From a purely Bayesian perspective, the role of a prior distribution in a statistical model has been
clarified by the celebrated de Finetti’s theorem, at least under the exchangeability assumption. In
particular, de Finetti (1931) shows that all exchangeable binary sequences are mixtures of Bernoulli
sequences:

Def. (Exchangeable sequence)

A binary sequence X1, . . . , Xn, . . . is exchangeable if and only if there exists a cumulative
distribution function F on [0, 1] such that for all n

P(X1 = x1, . . . , Xn = xn) =

∫ 1

0

ϑ
∑n
i=1 xi(1− ϑ)n−

∑n
i=1 xidF (ϑ).

Theorem 4 (de Finetti)

It further holds that F is the distribution function of the limiting frequency of the exchangeable
sequence,

F (y) = P(Y ≤ y),

where

Y = X∞ = lim
n→∞

n∑
i=1

Xi/n.

Remark. The Bernoulli distribution is obtained by conditioning to the event Y = ϑ,

P(X1 = x1, . . . , Xn = xn|Y = ϑ) = ϑ
∑n
i=1 xi(1− ϑ)n−

∑n
i=1 xi .

Remark. In general, we replace the unknown limiting distribution F (y) with the prior information
over the parameter ϑ.

Although this result is valid for Bernoulli random variables, Hewitt and Savage (1955) generalized
the result to all random variables over an abstract space X .
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Theorem 5 (Generalized de Finetti)

Let X1, . . . , Xn, . . . be an exchangeable sequence of random variables with values in X . Then
there exists a probability measure Q on the set of probability measures F (X ) such that

P(X1 ≤ x1, . . . , Xn ≤ xn) =

∫
F

n∏
i=1

F (xi)dQ(F ),

Remark. It further holds that Q is the limiting distribution function of the empirical distribution
function process.

Remark. This theorem is the basis for the application of Bayesian nonparametric models.

As a comparison, we can write the simplest models under the Bayesian and frequentist paradigms:

› Simplest frequentist model: There is an unknown distribution Q so that X1, . . . , Xn are inde-
pendent and identically distributed with distribution Q, Q(A) being defined as the limiting
proportion of X’s in A.

› Simplest Bayesian model: Subjective exchangeable probability distribution Q representing your
expectations for the behaviour of X1, . . . , Xn.

12.2 Objective priors

For many years objective priors were called noninformative, which are the simplest ones.

Location. For a location parameter, we use π(µ) ∝ 1.

Scale. For a scale parameter, we use π(σ) ∝ σ−1.

Although π(µ) is improper, there are some reasons to justify these results under some conditions.
Specifically, the only way to obtain perfect frequentist properties is to use the improper prior.

12.2.1 Jeffreys’ prior

This is by far the simplest and most immediate way of obtaining a prior distribution in absence of
information. Jeffreys’ prior is defined as

π(ϑ) ∝ det I(ϑ)1/2,

where I(ϑ) is the Fisher information matrix, whose elements are

Iij(ϑ) = −Eϑ
[

∂2

∂ϑi∂ϑj
log f(Y |ϑ)

]
.

Property. The prior is invariant to the choice of parametrization due to the Jacobian, hence it is
a 1st order matching prior. Moreover, it is optimal in many senses if the entire vector ϑ is of interest.
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Example (Poisson problem)

Let X1, . . . , Xn|ϑ
iid∼ Pois(ϑ), then the likelihood is

L(ϑ;x) ∝ exp {−nϑ}ϑ
∑n
i=1 xi .

For n = 1,
L(ϑ;x) ∝ exp {−ϑ}ϑx,

hence the Fisher information is

−∂
2`(ϑ)

∂ϑ2
=

x

ϑ2
,

and then I(ϑ) = Eϑ[X]/ϑ2 = 1/ϑ. Therefore,

π(ϑ) ∝ 1√
ϑ
,

and the posterior distribution is

π(ϑ|x) ∝ ϑt−1/2 exp {−nϑ} .

that is,
ϑ|X ∼ Gamma(n, t+ 1/2).

Probability matching. The Jeffreys’ prior yields a coverage probability of the resulting Bayesian
one-sided credible interval which matches asymptotically the coverage probability of the correspond-
ing frequentist confidence interval.

Problems. It has problems in the multidimensional case. Loosely speaking, if there is a parameter
of interest then the best prior depends on which of them is the nuisance one.

Example (Problems)

Suppose Xi ∼ N(µi, 1) for i = 1, . . . , p and the parameter of interest is

ϑ =
1

p

n∑
i=1

µ2
i =

1

p
‖µ‖22.

The Fisher matrix is diagonal and the diagonal elements do not depend on the ϑ’s, thus

π(µ1, . . . , µp) ∝ 1.

Therefore, we obtain
(µ1, . . . , µp)|X ∼ Np(x, 1),

which in turn implies that

p · ϑ ∼ χ2
p

(
p∑
i=1

x2
i

)
,

where
∑p
i=1 x

2
i is the non-centrality parameter.
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Problem. This is NOT a “good” posterior distribution for ϑ due to Stein’s Paradox, since

lim
p→∞

Eπ[ϑ|x]− ϑ = 2.

The same happens for the posterior mode or median.

Most important issue. The Jeffreys’ method seeks for the noninformative prior for the entire
vector of the parameters. If the parameter of interest is just a function of it, say ϑ, this introduces
a “bias” into the procedure.

12.2.2 Matching prior

Another way of defining the “noninformativeness” of a prior distribution is to do so is in terms of
frequentist coverage.

Idea. A noninformative prior should provide inferences similar to the classical frequentist methods.

Def. (Frequentist coverage probability (FCP))

We define the frequentist coverage probability (FCP) as

π(·)→ Cπ(X, 1− α),

where C is the one-sided credible interval. The FCP is defined as

P(ϑ ∈ Cπ(X, 1− α)|ϑ).

Def. (Matching prior)

A prior π is called a matching prior of order γ if

P(ϑ ∈ Cπ(X, 1− α)|ϑ) = 1− α+O(n−γ/2)

Remark. The idea is that a matching prior produces inference procedures that substantially agree
with frequentist methods.

12.2.3 Reference prior

The reference prior is the one which maximizes the expected (with respect to the sampling distri-
bution) Kullback-Leibler divergence between the prior and the posterior distribution. Specifically, if
the KL divergence is defined as

DKL
(
p, q
)

=

∫
X
p(x) log

(
p(x)

q(x)

)
dx,

which is zero if and only if q a.s.
= p. then we want to find

argmin
π

EX
[
DKL

(
π(ϑ|x), π(ϑ)

)]
.

This is a variational problem, for which we obtain a solution using various approximations.
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Idea. We use a sequence of Jeffreys’ prior one component at a time to minimize the KL divergence.

Def. (Entropy)

The entropy of a probability measure π defined on a probability space Ω is defined as

E = −
∫

Ω

π(ω) log π(ω)dω.

Given the experiment Ek = (Xk,Ω,P), one can define the “information contained in Ek” with
respect to a prior π as

IEk(π) =

∫
Xk

∫
Ω

m(xk)π(ω|xk) log
π(ω|xk)

ω(π)
dωdxk.

Here, m(x) is the marginal distribution of X. The reference prior makes k → ∞ and tries to find
the π(ω) that maximizes such information.

Example (Trinomial model)

Consider a trinomial model with probabilities (ω1, ω2, 1 − ω1 − ω2). Then, imagine that ω1

is the parameter of interest but we have to deal with λ = ω2. Then,

I(ϑ, λ) =
1

1− ϑ− λ
·

(
1−λ
ϑ 1

1 1−ϑ
λ

)
,

and thus the Jeffreys’ prior is the Dirichlet distribution with α = (1/2, 1/2, 1/2):

π(ϑ, λ) ∝ 1√
ϑλ(1− ϑ− λ)

.

The reference prior is instead the one that we would get by considering the counts in the
second and third cells together,

πr(ϑ, λ) ∝ 1√
ϑλ(1− ϑ)(1− ϑ− λ)

.

Remark. The problem is the dilemma between exchangeability (Jeffreys’ prior) and marginaliza-
tion (reference prior).

12.2.4 Discrete parameter space

Many problems are discrete by nature, for instance:

› choice of the number of mixture components;

› choosing between candidate models;

› . . .

For Θ discrete, methods as Jeffreys’ prior or reference priors do not work or give non-sensible results.
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12.3 Modern statistical practice Lecture 12: Bayesian inference

Villa and Walker approach We assign a worth to each ϑ ∈ Θ by objectively measuring what is
lost if ϑ is removed from the parameter space and it is the true value. This loss may be formalized
as (Merhav and Feder, 1998)

Loss(ϑ) = − log π(ϑ) ⇐⇒ Utility(ϑ) = log π(ϑ).

The formal definition for the prior can be obtained as

π(ϑ) ∝ exp

{
min
ϑ′ 6=ϑ

DKL
(
f(·|ϑ)||f(·|ϑ′)

)}
− 1.

12.2.5 Current state of practical objective Bayesian analysis

Ad hoc objective Bayesian analysis can be successful, especially if validated by experience or extensive
sensitivity studies. However, Gelman is a strong supporter of the so-called weakly informative priors
since a noninformative prior may give strong information to unlikely values of the parameter.
A constant prior can yield improper posteriors or can swamp the data in high dimensions:

› the posterior may be improper;

› the posterior may be dominated by the prior;

› the prior is not vanishing.

12.3 Modern statistical practice

Modern statistical practice usually faces problems for which objective priors are hard to compute or
even virtually impossible to obtain. Nevertheless a large body of research has been devoted over the
recent years to develop default priors for high dimensional models, typically relying on the notion
of sparsity:

› spike-and-slab priors (Ishwaran and Rao, 2005; Ročková and George, 2014), such as

π(ϑi) = γδϑ∗(ϑ) + (1− γ)g(ϑ),

where δz(·) is the Dirac delta centered in z and g(·) is a diffuse proper prior. Practical use
of those prior is not easy from a computational perspective, due to the presence of discrete
components and a huge model space.

› horseshoe priors (Carvalho et al., 2010), which approximate the spike using a mixture of distri-
butions:

ϑi|λi, τ
iid∼ N(0, λ2

i ) i = 1, . . . , p

λi|τ
iid∼ Cauchy(0, τ), i = 1, . . . , p

τ
iid∼ Cauchy+(0, 1)

By reparametrizing using κi = (1 + τ2λ2
i )
−1, marginally we have

ϑi|κi, τ ∼ N
(

0,
1− κi
κi

)
.
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Hence, κi ∈ [0, 1] is a local shrinkage factor for the ith component of the model. Polson and
Scott (2012) called this class of priors the global-local shrinkage priors.

› in the horseshoe prior, the dependence between of λi’s cannot be too large. Therefore,
bhattacharya2014 proposed the Dirichlet-Laplace prior

ϑj
ind∼ t DE(τ, φj), φ ∼ Dir(a, . . . , a), τ ∼ g(τ),

which yields a much stronger dependence.

› Another approach is when we want use a model f(x|ϑ) where f(x|ϑ0) gives a simpler version
of the model. Hence, we consider a function of the KL distance of f(x|ϑ) from f(x|ϑ0),

d(ϑ) =
√

2KL
(
f(x|ϑ)|f(x|ϑ0)|

)
.

Thus one might construct a prior for d(ϑ) using an exponential prior

π(d(ϑ)) = λe−λd(ϑ),

where λ determines the thickness of the tail.

Remark. The performance of high-dimensional default priors is typically measured in terms of
frequentist and asymptotic properties of the posterior estimators. For instance, one could estimate
posterior concentration on the true value of the parameter as the sample size increases.

64



Lecture 13: Monte Carlo methods

Lecture 13: Monte Carlo methods
2022-05-25

13.1 Introduction

Bayesian methods require the computation of integrals both to normalize posterior distributions and
to evaluate posterior summaries. When integrals do not have a closed form expression, numerical
integration and asymptotic approximations suffer from the curse of dimensionality. Markov Chain
Monte Carlo methods sample dependent draws from a Markov chain whose limiting distribution is
the posterior distribution.

Suppose that we wish to calculate

I =

∫
X
h(x)f(x)dx,

where f(x) is a density and h(x) is a function of x. For instance,

› h(x) = x =⇒ E[X]

› h(x) = x2 =⇒ E[X2]

› h(x) = 1A(x) =⇒ P[X ∈ A]

If |I| < ∞ and X1, . . . , XT
iid∼ f , then by the strong law of large numbers the empirical mean is

consistent for I,

Î =
1

T

T∑
i=1

h(xi)
a.s.−−→Ef [h(x)] as T →∞.

Moreover, the variance of Î can be estimated by

V̂ =
1

T 2

T∑
i=1

{
h(xi)− Î

}2
,

and when T is large it is approximately true that

Î − Ef [h(X)]√
V̂

.∼ N (0, 1),

hence we can obtain a confidence interval for I.

Remark. We need to sample from f in order to obtain the numerical approximation.

13.2 Monte Carlo sampling

13.2.1 Accept-reject methods

Alternative technique for computing integrals when it is impossible to directly sample from the
target density. Suppose that we need to evaluate

I =

∫
g(ϑ)π(ϑ)dϑ,
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and we cannot sample from π(ϑ) which is continuous and possibly unnormalized,

π(ϑ) = f(ϑ)/K.

However, we can sample from another function h(ϑ) and it holds that

f(ϑ) < c · h(ϑ).

Then, the accept-reject algorithm is able to generate values from π(ϑ) by alternating the following
steps:

1. Draw a candidate w ∼ h(ϑ) and a value u ∼ Unif(0, 1).

2. If
u ≤ f(w)

c · h(w)
,

then set ϑ = w, otherwise reject the candidate and go back to step 1.

Theorem 6 (Accept-reject)

It holds that

a) he distribution of the accepted values generated from the previous algorithm is exactly
the target density π(ϑ);

b) the marginal probability that a single candidate w is accepted is K/c.

Remark. When K is unknown, we must choose c such that f(ϑ) < c · h(ϑ) for all ϑ, then

c = sup
ϑ

f(ϑ)

h(ϑ)
.

13.2.2 Importance sampling

Importance sampling is based on the following representation for the integral of interest,

I =

∫
X
h(x)f(x)dx = Ef [h(X)]

=

∫
X
h(x)

f(x)

g(x)
g(x)dx = Eg[h(X)

f(X)

g(X)
],

where g is an arbitrary density whose support contains the support of f . Then, the integral can be
estimated using

Ĩ =
1

T

T∑
i=1

h(xi)
f(xi)

g(xi)
=

T∑
i=1

h(xi)w(xi),

where w(x) = f(x)/g(x) is called the importance function.
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V[Î] = T−1

∫
{h(x)− I}2 f(x)dx

V[Ĩ] = T−1

∫ {
h(x)

f(x)

g(x)
− I
}2

g(x)dx

and one can work on g to minimize the variance of Ĩ.

Remark. Importance Sampling variance is finite only when

Eg[h(X)2 f(X)2

g(X)2
] =

∫
h(X)2 f(X)2

g(X)
dx <∞, (15)

hence densities g with lighter tails than f are not good proposals.

Remark. Note that since (15) can be rewritten as∫
h(X)2 f(X)

g(X)
f(x)dx,

the ratio f(x)/g(x) must be bounded when f(x) is non negligible. This means that the modes of
f(x) and g(x) should be close to each other.

Both the estimators

µ̂ =

∑
i wih(Xi)∑

i wi

µ̃ =

∑
i wih(Xi)

n

and µ̂ is called self-normalized estimator.
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Theorem 7 (Bias and variance of IS)

For the estimators µ̂ and µ̃ we have that, respectively,

E[µ̃] = µ

V[µ̃] =
1

n
V[w(X)h(X)]

and

E[µ̂] = µ+
1

n

(
µV[w(X)]− Cov

(
w(X), w(X)h(X)

))
+O(n−2)

V[µ̃] =
1

n
V[w(X)h(X)]− 2µCov

(
w(X), w(X)h(X)

)
+ µ2 V

(
w(X)

)
+O(n−2),

where all expectations are taken with respect to g.

13.2.3 Sampling Importance Resampling

The idea is to start from a proposal distribution g(ϑ) and to convert it into a sample from π(ϑ|y).
In order to do so, we can apply the following algorithm:

1. For each j = 1, . . . , J we compute weights

ψj =
π(ϑj |y)

g(ϑj)
,

and normalize them using

wj =
ψj∑
h ψh

.

2. We draw a new sample ϑ∗1, . . . , ϑ∗J without replacement from the discrete distribution ϑ1, . . . , ϑJ

using weights w1, . . . , wJ .

Theorem 8 (Sampling importance Resampling)

The sample of the resampled ϑ’s is approximately a sample from π(ϑ|y).

Proof.
In the univariate case,

P(ϑ∗ ≤ a) =

J∑
i=1

wi1(−∞,a](ϑi)

=
n−1

∑
i ψi1(−∞,a](ϑi)

n−1
∑
i ψi

→
Eg[π(ϑ|y)]/g(ϑ)1(−∞,a](ϑ)

Eg[π(ϑ|y)]/g(ϑ)

=

∫ a

−∞
π(ϑ|y)dϑ.

68



13.3 Markov Chain Monte Carlo Lecture 13: Monte Carlo methods

Remark. The size J of the resampled values can be as large as desired.

Remark. The more g resembles π(ϑ|y), the smaller the sample size is needed to approximate the
target distribution.

Prop. 1 (Estimator for the normalizing constant)

A consistent estimator for the normalizing constant of the density is

Î =
1

J

J∑
j=1

ψj .

Proof.

m(y) =

∫
π(ϑ|y)dϑ =

∫
π(ϑ|y)

g(ϑ)
g(ϑ)dϑ ≈ 1

J

J∑
j=1

π(ϑj |y)

g(ϑj)
=

1

J

J∑
j=1

ψj .

Sequential Monte Carlo (SMC). The SIR methodology can be extended to sample from the
posterior distribution when the latter evolves over time, such as time series models and online
monitoring.

13.3 Markov Chain Monte Carlo

Define an invariant distribution π to be some distribution such that π = πP . In our case, the target
distribution is π(ϑ|y) and we want to devise a Markov chain so that the posterior distribution is the
stationary distribution.

Theorem 9 (Ergodic)

If {ξi, i ∈ N} is an irreducible, recurrent, with state space E, Rd-valued Markov chain which
admits a stationary distributionπ, then for any integrable function f : E → R it holds that

lim
t→∞

1

T

T∑
i=1

f(ξi)
a.s.−−→

∫
R
f(x)π(x)dx,

for almost every starting value x of the chain.

Remark. The Ergodic Theorem is the Markov-Chain analogue to the SLLN. It allows one to
ignore the dependence between draws of the Markov chain when we calculate quantities of interest
from the posterior draws.
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Moreover, the asymptotic variance of a MCMC estimator is approximately

V[f(X̂)] =
σ2

n

(
1 + 2

∑
i

ρi

)
,

where ρi is the ith lag autocorrelation of the sequence of the f(ξi)’s.

13.3.1 Gibbs sampling

We can use the Gibbs sampler to sample from the joint posterior distribution if we know the full
conditional distributions for each parameter. For each parameter, the full conditional is the distri-
bution of each single component of the parameter vector, conditional on the known information and
all the other parameters,

p(ϑj |ϑ−j , y) = p(ϑj |ϑ1, . . . , ϑj−1, ϑj+1, . . . , ϑJ , y).

Theorem 10 (Hammersley-Clifford in 2 dimensions)

Suppose we have a joint density f(x, y), then we can write the joint density in terms of the
conditional densities f(x|y) and f(y|x) as

f(x, y) =
f(y|x)∫ f(y|x)
f(x|y)dx

.

Proof.
The denominator can be written as∫

f(y|x)

f(x|y)
dx =

∫ f(x,y)
f(x) dx∫ f(x,y)
f(y) dx

=

∫
f(y)

f(x)
dy =

1

f(x)
.

Def. (Positivity condition)

A distribution with density f(x1, ..., xp) and marginal densities fXi(xi) is said to satisfy the
positivity condition if

f(x1, . . . , xp) > 0

for all x1, . . . , xp such that fXi(xi) > 0.

Theorem 11 (Hammersley-Clifford)

Let (X1, . . . , Xp) satisfy the postiivity condition and have joint density f(x1, . . . , xp). Then
for all (fx1, . . . , ξp) ∈ supp(f) we have

f(x1, . . . , xp) =

p∏
j=1

fXj |X−j (xj |x1, . . . , xj−1, ξj+1, . . . , ξp)

fξj |X−j (ξj |x1, . . . , xj−1, ξj+1, . . . , ξp)
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Remark. Note that the theorem does not guarantee the existence of a joint distribution for every
set of full conditionals. Therefore, a Gibbs sampler can be used only when the existence of a joint
distribution has already been established.

13.3.2 Metropolis-Hastings

If all else fails, we can use the Metropolis-Hastings algorithm, which is guaranteed to always work.
The problem, however, is that we need to implement a carefully-designed proposal distribution in
order to obtain the posterior distribution.

Algorithm 1 Metropolis-Hastings

1: Choose a starting value ϑ(0)

2: At iteration t, draw a candidate ϑ∗ from a proposal distribution qt(ϑ∗|ϑ(t−1)).
3: Compute an acceptance ratio

α = min

{
1,

π(ϑ∗|y)qt
(
ϑ(t−1)ϑ∗

)
π(ϑ(t−1)|y)qt(ϑ∗|ϑ(t−1))

}
.

4: Accept ϑ(t) ←− ϑ∗ with probability α, otherwise ϑ(t) ←− ϑ(t−1).

Remark. The proposal distribution qt(ϑ∗|ϑ(t−1)) determines where we move to in the next itera-
tion of the Markov chain (analogous to the transition kernel). The correction term in the calculation
of α is needed when the distribution q is not symmetric. Moreover, the support of the proposal
distribution must contain the support of the posterior.

Proportionality. Since α is a ratio, m(y) cancels out in both the numerator and denominator
and thus we only need π(ϑ|y) up to a constant of proportionality.

Acceptance. Using theoretical arguments, the optimal acceptance rate α using a normal random
walk proposal N (ϑ(t−1), σ2

q ) can be shown to be in [0.25, 0.45].

13.3.3 Rao-Blackwellization

Suppose that (ϑ1, . . . , ϑn) is the parameter and that h(ϑ1) is our function of interest. Then, the
naive approach for estimating h(ϑ1) would be to use the first element of the output from a Gibbs
sampler and use

δ0 =
1

T

T∑
t=1

h(ϑ
(t)
1 )

T→∞−−−−→
∫
h(ϑ1)π(ϑ1)dϑ1,

which is unbiased for h(ϑ1).

The Rao-Blackwellization procedure replaces δ0 with its conditional expectation

δRB =
1

T

T∑
t=1

E
[
h(ϑ1)|ϑ(t)

2 , . . . , ϑ(t)
p

]
.
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Corollary 1 (Rao-Blackwellization)

Due to Rao-Blackwell theorem, we have that

› Both δ0 and δRB converge to E[h(ϑ1)].

› Both estimators are unbiased.

› V[δRB] ≤ V[δ0].

Remark. This implies that δRB is uniformly better than δ0.
Another substantial benefit of RB is in the approximation of densities of different components of ϑ
without using nonparametric density estimation methods.

Lemma 1 (Conditional convergence)

The estimator
1

T

T∑
t=1

fi(ϑi|ϑ(t)
j , j 6= i)

T→∞−−−−→ fi(ϑi),

and it is unbiased.

13.4 Convergence diagnostics

Recall that MCMC is an iterative procedure, such that it converges to the target distribution as
t −→ ∞ for any starting value ϑ(0). However, the early samples are strongly influenced by the
distribution ϑ(0), which is presumably not drawn from π(ϑ|y).

13.4.1 Geweke diagnostic

Geweke (1992) proposed a convergence test based on a time-series analysis approach. Informally,
if the chain has reached convergence then statistics calculated over different portions of the chain
should be close to each other.

By default, we select the first 10% and last 50% of the chain, and calculate the mean over these two
sets. If the samples are drawn from the stationary distribution of the chain, the two means are equal
and Geweke’s test statistic has an asymptotically standard normal distribution.

13.4.2 Gelman & Rubin test

Gelman and Rubin (1992) proposed a convergence test based on output from two or more multiple
runs of the MCMC simulation, where the chains are started from different initial over-dispersed
values relative to the posterior distribution.

The method compares the within and between chain variances for each variable. When the chains
have “mixed” (converged) then the variance within each sequence and the variance between sequences
for each variable will be roughly equal.

B =
n

J − 1

∑
j

(ηj − η)2,
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where
ηj =

1

n

∑
i

ηij , η =
1

J

∑
j

ηj ,

and the within variance is
W =

1

J(n− 1)

∑
i

∑
j

(ηij − ηj)2.

An unbiased estimator of V[η|y] is the weighted average

V̂[η|y] =
n− 1

n
W +

1

n
B,

from which we can obtain a factor

R̂ =

√
V̂[η|y]

W
≈
(

1 +
B

nW

)
.

Remark. When R̂ is high (perhaps greater than 1.1 or 1.2), then we should run our chains out
longer to improve convergence to the stationary distribution.

Remark. There is an improved R̂ version which has been introduced by Vehtari et al. (2020).

13.4.3 Effective sample size

Since the valued are autocorrelated, we can reduce the sample size to what we would observe com-
pared to i.i.d samples from the posterior. The effective sample size (ESS) is defined as

ESS =
T(

1 + 2
∑k
j=1 ρ(j)

) ,
and the closer it is to T the better it is.
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Lecture 14: Bayesian linear model
2022-06-06

Bayesian inference implies the use of a prior distribution for (β, σ2). Because of practical considera-
tions, we can use a conjugate prior to use a conjugate prior of the form

π(β, σ2) = π(β|σ2)π(σ2),

where

β|σ2 ∼ N(β0, σ
2V0),

σ2 ∼ IGamma(c0/2, d0/2).

Since the likelihood can be written as

L(β, σ2;y) ∝
(

1

σ2

)n/2
exp

{
− 1

2σ2
(y − ŷ)>(y − ŷ) + (β − β̂)>X>X(β − β̂)

}

∝
(

1

σ2

)n/2
exp

{
− 1

2σ2

(
nS2 + (β − β̂)>X>X(β − β̂)

)}
,

where nS2 = (y − ŷ)>(y − ŷ), we can apply the prior distribution in order to show that it is
conjugate.

Theorem 12 (Quadratic form equivalence)

Let x,a, b ∈ Rk and let A,B ∈ Rk×k be symmetric matrices such that (A + B)−1 exists.
Then,

(x−a)>A(x−a)+(x−b)B(x−b) = (x−c)>(A+B)(x−c)+(a−b)>A(A+B)−1B(a−b),

where c = (A+B)−1(Aa+Bb).

Using the above theorem, we have that the posterior distribution is

π(β, σ2|y) ∝ 1

(σ2)n/2+c0/2+p/2+1
exp

{
− 1

2σ2

(
nS2 + d0 +Q(β)

)}
,

where
Q(β) = (β − β̂)X>X(β − β̂) + (β − β0)>V −1

0 (β − β0).
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Theorem 13 (Dickey)

Let X be a k-dimensional random vector and Y be a scalar random variable such that

X|Y ∼ N(µ, YΨ), Y ∼ IGamma(a, b),

then ht marginal distribution of X is multivariate Student

X ∼ Stk
(

2a, µ,
b

a
Ψ

)
.

Hence, we can write the posterior distribution of the β vector as

β ∼ Stp
(
c∗, β̃,

d∗

c∗
Ṽ

)
.

Finally, the full conditional distribution of π(σ2|β, y) is

σ2|β, y ∼ IGamma

(
n+ c0 + p

2
,
d0 + kS̃2 +Q(β)

2

)
.

Def. (Zellner’s g-prior)

We define Zellner’s g-prior as the prior distribution that places the prior distribution of β as

β|σ2 ∼ N(β0, gσ
2 · (X>X)−1),

where g is the only hyperparameter of choice.
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