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Lecture 0: Probability review

Lecture 0: Probability review
2021-10-11

References Çinlar (2011, §1-2)

Paolella (2007)

In this section we summarize a (hopefully useful) review of concepts which can serve as a basis for
the following lectures.

0.1 Probability spaces

Let E be a set, we want to define some useful quantities to build the notion of a probability space,
that is, a space onto which a probability measure can be defined.

Def. (Sigma-algebra)

A non-empty collection E of subsets of E is called a σ-algebra on E if

a) E ∈ E

b) (Closure under c) A ∈ E =⇒ Ac ∈ E

c) (Closure under ∩) A1, A2, . . . ∈ E =⇒
∞⋃
n=1

An ∈ E

Remarks

› Every σ-algebra on E includes E and ∅ at least, indeed E = {∅, E} is called the trivial σ-algebra.

› Conversely, the maximal sigma algebra on E is given by the power set of E denoted by P(E).

› A countable (or uncountable) intersection of σ-algebras on E is again a σ-algebra on E. Given
a collection C of subsets of E, we define the σ-algebra generated by C as the intersection of all
σ-algebras E on E which contain C,

σ(C) =
⋂
E : C⊆E

E .

› If E is a topological space, then the σ-algebra generated by the collection of all open subsets
of E is called the Borel σ-algebra and is denoted by B(E). B ∈ B(E) is called a Borel set.

› Given two sets E and F with σ-algebras E and F , we can define the σ-algebra generated by
the rectangles on E × F as

E ⊗ F = σ
(
{A×B : A ⊆ E , B ⊆ F}

)
.

Moreover, if E and F are the Borel σ-algebra on R, we have

B(R)⊗ B(R) = B(R2).

With the above definition of a σ-algebra, we can now define the basic type of space onto which a
probability measure can be constructed.
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0.1 Probability spaces Lecture 0: Probability review

Def. (Measurable space)

A measurable space is a pair (E, E) where E is a set and E a σ-algebra on E. Elements of
E are accordingly called measurable sets.

Let E and F be sets. A function f : E −→ F is a rule that assigns an element f(x) ∈ F to each
x ∈ E. We are interested in a particular class of functions, namely those which are related to the
sigma algebra defined on the spaces E and F .

Def. (Measurable function)

Let (E, E) and (F,F) be measurable spaces. A mapping f : E −→ F is said to be measur-
able wrt to E and F if for every B ∈ F ,

f−1(B) ∈ E .

Prop. 1 (Measurable functions of measurable functions are measurable)

If f is measurable relative to E and F and g is measurable relative to F and G, then
g ◦ f : E −→ G given by g ◦ f(x) = g

(
f(x)

)
is measurable relative to E and G.

Proof.
For C ∈ G, we have that (g ◦ f)−1(C) = f−1

(
g−1(C)

)
. Now, g−1(C) ∈ F since g is measurable, and

therefore f−1
(
g−1(C)

)
∈ E by the measurability of f .

Remark If µ is a measure on E and f : E → F is measurable wrt to E and F , then f induces a
measure µ̂ on F given by

µ̂(B) = µ
(
f−1(B)

)
, B ∈ F .

A probability space is a triplet (Ω,F ,P) where Ω is a set (set of outcomes), F is a σ-algebra on Ω

(set of events), and P is a probability measure on (Ω,F). Mathematically, a probability space is a
measure space where the measure has a total mass of one.
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0.2 Random variables Lecture 0: Probability review

The probability measure has the following properties, which are verified for all finite measures:

(Norming) P
(
∅
)

= 0,P
(
Ω
)

= 1,P
(
H
)

= 1− P
(
Hc
)

(Monotonicity) H ⊂ K =⇒ P
(
H
)
≤ P

(
K
)

(Finite additivity) H ∩K = ∅ =⇒ P
(
H ∪K

)
= P

(
H
)

+ P
(
K
)

(Countable additivity) (Hn)n∈N disjoint =⇒ P
( ⋃
n∈N

Hn

)
=
∑
n∈N

P
(
Hn

)

(Sequential continuity)
Hn ↗ H =⇒ P

(
Hn

)
↗ P

(
H
)

Hn ↘ H =⇒ P
(
Hn

)
↘ P

(
H
)

(Boole’s inequality) P
( ⋃
n∈N

Hn

)
≤
∑
n∈N

P
(
Hn

)
.

0.2 Random variables

Def. (Random variable)

Let (E, E) be a measurable space. A mapping X : Ω −→ E is called a random variable
provided that it be measurable relative to F and E , that is, if for every A ∈ E ,

X−1(A) = {X ∈ A} = {ω ∈ Ω : X(ω) ∈ A} ∈ F .

In general, we say that X is E-valued with the σ-algebra E that is understood from context.

Def. (Distribution of a random variable)

Let X be a random variable on (E, E), then we define the distribution of X as the image
of µ of P under X,

µ(A) = P
(
X−1(A)

)
= P

(
X ∈ A

)
, A ∈ E .

Let X be a r.v. in (E, E) and let (F,F) be another measurable space. Let now f : E −→ F a
measurable function relative to E and F , then the composition Y = f ◦ E

Y (ω) = f ◦X(ω) = f
(
X(ω)

)
, ω ∈ Ω

is a random variable taking values in (F,F) (Prop 1). If µ is the distribution of X, then the distri-
bution ν of Y is ν = µ ◦ f−1:

ν(B) = P
(
Y ∈ B

)
= P

(
X ∈ f−1(B)

)
= µ

(
f−1(B)

)
, B ∈ F .

3
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Def. (Joint distribution)

If X and Y are random variables on (E, E) and (F,F) respectively, then Z = (X,Y ) is
random variable on (E×F, E ⊗F) and the distribution of Z is called the joint distribution
of X and Y , which is fully specified by

π(A×B) = P
(
X ∈ A, Y ∈ B

)
, for all A ∈ E , B ∈ F .

Def. (Marginal distribution)

If Z = (X,Y ) is a r.v. on (E × F, E ⊗ F) that has joint distribution π, then the marginal
distributions of X and Y are, respectively,

µ(A) = π(A× F ) and ν(B) = π(E ×B).

Def. (Independence)

With the previous assumptions, X and Y are said to be independent if their joint distri-
bution is

P
(
X ∈ A, Y ∈ B

)
= P

(
X ∈ A

)
P
(
Y ∈ B

)
, A ∈ E , B ∈ F .

Remark An arbitrary collection (countable or uncountable) of random variables is said to be
independent if every finite subcollection (Xi1 , . . . , Xin) is independent.

If X is a random variable, then its integral w.r.t. the measure P makes sense to talk about, since by
definition it is F-measurable.

Def. (Expected value)

The integral of X w.r.t the measure P is called the expected value of X,

E
[
X
]

=

∫
Ω

X(ω)P(dω) =

∫
Ω

XdP.

If E
[
X
]
<∞ then X is said to be integrable.
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Figure 1: The integral P(X) is the area under X, the expected value E(X) is the constant
“closest” to X.

Theorem 1 (Law of the unconscious statistician)

If X is a r.v. on (E, E) and f is E-measurable, then

E
[
f(X)

]
=

∫
Ω

f
(
X(ω)

)
P(dω)

Remark Choosing f(X) = 1A, we find that E
[
1A(X)

]
= P

(
X ∈ A

)
.

0.3 Lp spaces

Def. (p-norm)

For p ∈ [1,∞) we define the p-norm of X to be

‖X‖p = E
[
|X|p

]1/p
,

and for p =∞ we define it as the essential supremum of X

‖X‖∞ = inf
b∈R+

{|X| ≤ b almost surely} .

Remarks

› ‖X‖p = 0 =⇒ X ≡ 0 almost surely.

› ‖cX‖p = c‖X‖p for x ≥ 0.

We have a very famous theorem which defines the relationship between different random variable
norms.
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Theorem 2 (Hölder’s inequality)

For p, q, r ∈ [1,∞) such that 1
p + 1

q = 1
r ,

‖XY ‖r ≤ ‖X‖p‖Y ‖q,

in particular for r = 1, p = 2, q = 2 we have Schwartz’s inequality

‖XY ‖1 ≤ ‖X‖2‖Y ‖2.

Theorem 3 (Minkowski’s inequality)

For p ∈ [1,∞],
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Lemma 1 (Jensen’s inequality)

Let D be a convex subset of Rd and f : D −→ R be continuous and concave. If X1, . . . , Xd

are integrable r.v. and (X1, . . . , Xd) ∈ D almost surely. Then,

E
[
f(X1, . . . , Xd)

]
≤ f

(
E[X1], . . . ,E[Xd]

)
.

0.4 Generating functions

References Paolella (2007, §1)

Various integrals of interest are obtained by choosing an appropriate function g : R×R→ R of two
variables, (t,X), and are usually viewed as a function of t after integration wrt to X,

E
[
g(t,X)

]
=

∫ ∞
−∞

g(t, x) dFX(x).

Some notable examples of these functions include the following:

› n-th moment : g(n, x) = xn =⇒ E
[
Xn
]

› n-th abs. moment : g(n, x) = |x|n =⇒ E
[
|X|n

]
› Probability-generating function: g(t, x) = tx =⇒ G(t) = E

[
tX
]
. This function is useful for

discrete random variables, since

– p(k) = P
(
X = k

)
=

1

k!
· ∂
∂t
G(t)

∣∣∣
t=0

– GX = GY =⇒ pX = pY .

– The kth factorial moment is

E
[

X!

(X − k)!

]
=

∂

∂t
G(t)

∣∣∣
t=1−

6
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0.4 Generating functions Lecture 0: Probability review

– If MX(t) is the moment-generating function of X, then

GX(et) = MX(t).

– If N ∼ PN and SN =
∑N
i=1Xi, with Xi

iid∼ PX and N ⊥⊥ Xi, then using the law of total
expectation we have

GSN (t) = EPN

[
EPX

[
t
∑N
i=1Xi |N

]]
= EPN

[
GX(t)N

]
= GN

(
GX(t)

)
.

0.4.1 Moment-generating function

Def. (Moment-generating function)

The moment-generating function (mgf) of a random variable X is the function t 7→ etX

and is said to exist if there is an h > 0 such that

For all t ∈ (−h, h), MX(t) <∞.

Remarks

› If MX(t) exists, then the convergence strip of MX(t) is the largest open interval such that
MX(t) <∞,

sup
h

{
(−h, h) : MX(t) <∞ ∀t ∈ (−h, h)

}
.

› For a location-scale family, if Z = µ+ σX we have that

MZ(t) = E
[
et(µ+σX)

]
= eµtMX(σt).

› If N ∼ PN and SN =
∑N
i=1Xi, with Xi

iid∼ PX and N ⊥⊥ Xi, then again by using the law of
total expectation we have

MSN (t) = EPN

[
EPX

[
et

∑N
i=1Xi |N

]]
= EPN

[
MX(t)N

]
= GN

(
MX(t)

)
.

Theorem 4 (Existence of absoute moments)

If MX(t) exists, then for all r ∈ (0,+∞) we have that

E
[
|X|r

]
<∞.

It can be shown that the derivative operator can be moved inside the expectation, and the moment-
generating function can be used to compute the kth moment of X.

7
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0.4 Generating functions Lecture 0: Probability review

Theorem 5 (Generation of moments)

If MX(t) exists, then we can write

∂

∂t
MX(t) =

∂

∂t
E
[
etX
]

= E
[
∂

∂t
etX
]

= E
[
XjetX

]
,

and therefore E
[
Xj
]

=
∂

∂t
MX(t)

∣∣∣
t=0

.

Example (mgf of DUnif(ϑ))

Let X ∼ DUnif(ϑ), i.e. X is discrete with pmf

pX(x;ϑ) =
1

ϑ
1{1,2,...,ϑ}(x).

Then, the mgf of X is

MX(t) = E
[
etX
]

=
1

ϑ

ϑ∑
i=1

etj .

From this, we can easily calculate E
[
X
]
simply by deriving wrt to t

E
[
X
]

=
1

ϑ

∂

∂t

ϑ∑
j=1

etj
∣∣∣
t=0

=
1

ϑ

ϑ∑
j=1

jetj
∣∣∣
t=0

=
1

ϑ

ϑ∑
j=1

j

=
1

ϑ

ϑ(ϑ+ 1)

2

=
ϑ+ 1

2
.

Example (mgf of Unif(0, 1))

Let X ∼ Unif(0, 1), then we find that the mgf of X is

MX(t) =

∫ 1

0

etx dx =
1

t
(et − 1),

which exists finite for all t ∈ (0, 1). Since the Taylor expansion of MX(t) around zero is

et − 1

t

t≈0
=

1

t

(
t+

t2

2
+
t3

6
+
t4

24
+ . . .

)
= 1 +

t

2
+
t2

6
+ . . . =

∞∑
j=0

tj

(j + 1)!
,

8



0.4 Generating functions Lecture 0: Probability review

we have that the rth derivative has only the rth term constantly equal to 1 in t at the
numerator, and therefore

E
[
Xr
]

=
1

r + 1
.

For the multivariate case, we have a straightforward generalization of the mgf using vector notation.

Def. (Multivariate moment-generating function)

Let X be a multivariate r.v, then its moment-generating function is

MX(t) = E
[
et
>X
]
.

Theorem 6 (Sawa)

Let X1, X2 be r.v.s such that P
(
X1 > 0

)
= 1 with joint mgf MX1,X2

(t1, t2) which exists for
t1 < ε and |t2| < ε, ε > 0. Then, we have that

E
[(X2

X1

)k]
=

1

Γ(k)

∫ 0

−∞
(−t1)k−1

[ ∂k
∂tk2

Mx1,x2
(t1, t2)

]
t2=0

dt1.

0.4.2 Cumulant-generating function

Def. (Cumulant-generating function)

LetMX(t) be the moment-generating function of a r.v. X. Then, the cumulant-generating
function KX(t) of X is

KX(t) = logMX(t).

Remarks

› If Sn =
∑n
i=1Xi with Xi i.i.d, then

KSn(t) = nKX(t).

› The jth derivative of KX evaluated at t = 0 is the jth cumulant of X,

κj =
∂j

∂tj
KX(t)

∣∣∣
t=0

,

where if µj = E
[
Xj
]
, the first four cumulants are given by (Pace and Salvan, 1997):

κ1 = µ1,

κ2 = µ2 − µ2
1,

κ3 = µ3 − 3µ1µ2 + 2µ2
1,

κ4 = µ4 − 3µ2
2 − 4µ1µ3 + 12µ2

1µ2 + 6µ4
1.

9
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Example (cgf of a N (µ, σ2))

For X ∼ N (µ, σ2) we have that the moment-generating function is

MX(t) = eµt+σ
2 t2

2 =⇒ KX(t) = logMX(t) = µt+ σ2 t
2

2
.

Therefore, the first two cumulants are
κ1 = ∂

∂t

(
µt+ σ2 t2

2

)∣∣∣
t=0

= µ,

κ2 = ∂2

∂t2

(
µt+ σ2 t2

2

)∣∣∣
t=0

= σ2.

Other examples of cgf’s can be found in (Paolella, 2007, pp. 8–10).
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Lecture 1: Convergence and limit theorems

Lecture 1: Convergence and limit theorems
2021-10-14

References Gut (2009), first portion of the course

Email : stefano.pagliarani9@unibo.it

The course will be focussed on the stochastic processes portion of probability theory, after a brief
reminder of limit theorems, conditional probability, and measure theory.

1.1 Convergence of random variables

Convergence of random variables is a little bit trickier than just real numbers.

Notation: AC is the set of absolutely continuous probability measures wrt the Lebesgue measure.

› Absolute continuity : if µ ∈ AC is absolutely continuous, we write

µ(dx) = f(x)dx

› Integration in measure spaces: Let X ∼ µ, then by a theorem we have

E
[
f(X)

]
=

∫
Rd
f(x)µ(dx), (1)

and we can differentiate between two types of distribution:

a) µ discrete =⇒ E
[
X
]

=
∑
n xp(x)

b) µ ∈ AC =⇒ E
[
X
]

=
∫
Rd x · f(x)dx

Example (Intuition of convergence)

Consider µn = Unif[0, 1n ] for n ∈ N, and it is absolutely continuous w.r.t. Lebesgue measure.
This means that it admits a probability density which is defined by

µn(dx) =

n if x ∈ [0, 1
n ]

0 if x 6∈ [0, 1
n ]

 dx

It is intuitive to think that the measure is converging to a spike in zero, i.e.

µn
n→∞−−−−→ δ0,

where δx denotes the Dirac delta distribution centered in x, such that δx({x}) = 1. We
need to mathematically characterize this type of convergence in a more formal way than by
intuition.

Maybe it could be that for any Borel set A ⊆ B(R),

µn(A)
n→∞−−−−→ δ0(A),

11
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1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

but unfortunately this is wrong since we can see that, for A = {0} and for all n ∈ N:

µn({0}) = 0 6= 1 = δ0({0}).

So we can either throw out the idea that the uniform converges to a Dirac delta, or change
the definition of convergence to accommodate for the behaviour in Figure 2.

Moreover, assume now that Xn ∼ µn such that µn
n→∞−−−−→ δ0, what can we say about the

properties of Xn? In general (as we will see afterwards), this depends on the specific type of
convergence that we assume.

11/21/4

2

1

x

f(x)

Figure 2: Convergence of the sequence of uniform distributions to the Dirac measure in zero.

Def. (Convergence in distribution)

Let (µn)n∈N be a sequence of distributions on (Rd,B). We say that µn converges in dis-
tribution to another distribution µ,

µn
d−→µ,

if, for any possible choice of test function f ∈ Cb(Rd),∫
Rd
f(x)µn(dx)

n→∞−−−−→
∫
Rd
f(x)µ(dx).

This convergence is in the sense of standard real analysis.

Notation: Cb(Rd) is the set of continuous bounded functions

Remark All test functions f define a measure when integrated wrt to µn(dx), and when all said
measures are equal to those obtained by integrating against another distribution µ, then we obtain
the convergence in distribution.

Example (Uniform distribution)

12



1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

Consider µn = Unif[0, 1n ] and µ = δ0, take any function f ∈ Cb(R) and compute

∫
R
f(x)µn(dx) =

∫ 1
n

0

f(x) · n · dx

= n ·
∫

[0, 1n ]

f(x)dx︸ ︷︷ ︸
≈ 1
n ·f(0)

n→∞−−−−→ f(0).

The last equality holds since f is continuous, and by the mean value theorem we can approx-
imate it by the left extrema. However, by definition of the abstract integral wrt the Dirac
delta function we have that

f(0) =

∫
R
f(x)δ0(dx),

which proves that µn
d−→µ.

Remark If A ∈ B(Rd) is an event and µ is a distribution, then

µ(A) =

∫
Rd
1A(x)dx,

where 1A is the indicator function such that

1A(x) =

1 if x ∈ A
0 otherwise

Had we used f 6∈ Cb(Rd) instead, then we could have chosen f = 1{0} and convergence in distribution
would not have been satisfied. The example below shows another case in which another type of
convergence is useful in order to characterize a common-sense behaviour of random variables.

Example (Sequence of Dirac functions)

Consider µn = δ1/n and µ = δ0, then it is clear that this is a discrete measure that in some
intuitive sense converges to zero. If we choose f(x) = 1{0}, then we find that∫

R
f(x)µn(dx) =

∫
R
1{0}(x)δ 1

n
(dx) = 1{0}(1/n) = 0 ∀n,

and therefore does not converges to δ0.

Recall: A random variable is such that the event (Xn ∈ A) ∈ Fn, which means that the function
is measurable.

13



1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

Def. (Weak convergence of random variables)

Let (Xn)n∈N be a sequence of random variables, Xn : (Ωn,Fn,Pn) −→ (Rd,B). Let now X

be a random variable on (Ω,F ,P). Then, we say that Xn converges weakly/in distribu-
tion/in law, Xn

d−→X, if their measures are such that

µXn
d−→µX .

Remark By the definition of expected value in Equation (1), a family of random variables (Xn)n∈N

is such that, for any f ∈ Cb(Rd)

Xn
d−→X ⇐⇒ E

[
f(Xn)

] n→∞−−−−→ E
[
f(X)

]
.

This is however the weakest type of convergence out of all those that we will consider, since in other
cases the probability spaces might be different.

Def. (Stronger definitions of convergence)

(Xn)n∈N sequence of random variables and X a r.v., all defined on the same probability
space

Xn, X : (Ω,F ,P) −→ (Rd,B).

Then we say that

a) Xn converges in Lp to X, and we denote it by Xn
Lp−−→ X if Xn and X are random

variables in Lp = {r.v. on (Ω,F ,P) : E[|X|p] <∞} and

‖Xn −X‖Lp
n→∞−−−−→ 0,

where ‖X‖Lp = E
[
|X|p

] 1
p .

b) Xn converges in probability to X, and we denote it by Xn
P−→X if for all ε > 0,

lim
n→∞

P
(
|Xn −X| ≥ ε

)
= 0.

c) Xn converges almost surely to X, and we denote it by Xn
a.s.−−→X if

P
(

lim
n→∞

Xn = X
)

= 1,

where the event inside P is in the sense of real analysis,{
w ∈ Ω : Xn(ω)

n→∞−−−−→ X(ω)
}
,

which can be proven to be a measurable set and therefore a valid event.

Remark The Lp norm of the difference induces a distance between functions in the sense of func-
tional analysis.

14



1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

Example (Difference in interpretation)

Consider a Bernoulli game where we equally bet on an outcome ±1. The second type of
convergence does not tell us that almost surely our gain will converge to zero, but rather
that we can set a small tolerance and find some n such that our gain will be smaller than
that.

The following inequality is a basic tool for probability, which will be useful later on.

Theorem 7 (Markov’s inequality)

Let X be a r.v. and λ > 0, then

P
(
|X| > λ

)
≤

E
[
|X|p

]
λp

, p ≥ 0.

Proof.
If E

[
|X|p

]
=∞, then there is nothing to prove. If instead E

[
|X|p

]
<∞, then since 1A is either 1 or

0 we have
E
[
|X|p

]
≥ E

[
|X|p · 1|X|>λ

]
≥ E

[
λp · 1|X|>λ

]
(since |X| ≥ λ)

= λp · P
(
|X| > λ

)
.

Corollary 1 (Chebyshev’s inequality)

By choosing p = 2 and considering the random variable X−E[X], Markov’s inequality states
that

P
[
|X − E[X]| > λ

]
≤

E
[
|X − E[X]

]
|2

λ2
=

V
[
X
]

λ2
.

Theorem 8

Under the according assumptions for Xn, X we have the following set of implications:

1. Xn
a.s.−−→X =⇒ Xn

P−→X =⇒ Xn
d−→X.

2. Xn
P−→X =⇒ there is a subsequence Xkn such that Xkn

a.s.−−→X.

3. Xn
d−→X =⇒ Xn

P−→X iff µX = δx0

4. Xn
L1

−−→ X =⇒ Xn
P−→X

5. Xn
P−→X =⇒ Xn

L1

−−→ X iff |Xn| ≤ Y ∈ Lp

Proof.

15



1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

1. a.s. =⇒ p : P
(
|Xn −X| ≥ ε

)
= E

[
1|Xn−X|≥ε

]
and the indicator function converges to zero

as n → ∞ by assumption. Since 1A is bounded, by the dominated convergence theorem the
integral (expectation) also converges to zero.

4. Lp =⇒ p : Follows as a consequence of Markov’s property, since we can majorize the prob-
ability by the expected value

P
(
|Xn −X| ≥ ε

) Thm.7
≤

E
[
|Xn −X|p

]
εp

=
‖Xn −X‖pLp

εp
n→∞−−−−→ 0.

where the convergence to 0 is a consequence of the Lp convergence assumption.

Example (A.s. does not imply Lp)

Let m ∈ R and Xn = nm1[0, 1n ] on the probability space
(
[0, 1],B([0, 1]), λ[0,1]

)
→ R, and

let’s try to establish some convergence for the random variable Xn.

› If ω > 0, then we can find some n such that Xn is equal to zero:

Xn(ω) = nm1[0, 1n ](ω)
n→∞−−−−→ 0.

› If ω = 0, then
Xn(0) = nm

n→∞−−−−→ +∞, for m > 0,

however the event {0} has null probability since we have a uniform distribution on[
0, 1

n

]
at all steps of the limit, and as such we have

Pµn
(
{0}
)

= 0 for all n ∈ N.

Therefore, the set of limit elements for absolute convergence is{
ω ∈ Ω : Xn(ω)

n→∞−−−−→ X(ω)
}

= Ω \ {0} .

Since P
(

lim
n→∞

Xn = X
)

= P
(
Ω \ {0}

)
= 1, we have that

Xn
a.s.−−→X ≡ 0 ( =⇒ X

P−→X).

On the other hand for Lp convergence we have that

E
[
|Xn −X|p

]
= E

[
|Xn|p

]
=

∫
[0,1]

nmp · 1[0, 1n ](x)dx

= nmp · 1

n

= nmp−1.
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1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

We conclude that Xn
Lp−−→ X ⇐⇒ mp − 1 < 0 ⇐⇒ m < 1/p, but we always have

almost-sure convergence for any m > 0.

Example (Gaussian distribution)

Consider Nµ,σ2 = ϕµ,σ2(x)dx, with

ϕµ,σ2(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2 .

Consider now a sequence of real numbers µn → µ and a sequence of real numbers σn → 0.

x

Figure 3: Convergence of the normal distribution to the Dirac delta function.

So we can expect that Nµn,σn
d−→ δµ. As an exercise, prove this convergence (use a simple

change of variables).

However, for the Gaussian case we can prove something stronger: if Xn ∼ Nµn,σn and X ≡ µ
we can prove convergence in L2. Using the triangle inequality, we can write

E
[
|Xn − µ|2

]
≤ E

[
|Xn − µn|2 + |µn − µ|2︸ ︷︷ ︸

→0

]
,

and since E
[
|Xn − µn|2

]
= V

[
Xn

]
= σ2

n
n→∞−−−−→ 0, we also have L2 convergence.

Exercise: prove that Nµn,σn
d−→ δµ if µn → µ and σn → 0.

Proof.
Consider any test function f ∈ Cb(R), then if ϕ(t) is the pdf of a N0,1 distribution we have that∫

R
f(x)Nµn,σn(dx) =

∫
R
f(x) · 1

σn
· ϕ
(
x− µn
σn

)
dx (abs. continuity)

=

∫
R
f (σny + µn) ·�σn

1

�σn
ϕ(y)dy (change of var.).

Since both f and ϕ are bounded the function t 7→ f(t)ϕ(t) is bounded by g(t) = maxt′ f(t′) · ϕ(t),
which is Lebesgue integrable and the dominated convergence theorem can be therefore applied to
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1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

obtain the following equivalence

lim
n→∞

∫
R
f (σny + µn)ϕ(y)dy =

∫
R

lim
n→∞

f(σny + µn)ϕ(y)dy = f(µ)

∫
R
ϕ(y)dy = f(µ).

Therefore we have convergence in distribution to δµ by definition of the abstract integral wrt the
Dirac measure.

Def. (C.d.f. of a distribution)

Given a distribution µ on R, the cdf of µ is the function Fµ : R −→ [0, 1] defined by

Fµ(x) = µ
(
(−∞, x]

)
.

Remark Among all known properties such as monotonicity, boundedness, etc, the most important
for what follows is the property of right-continuity.

Figure 4: Right-continuity of the cumulative distribution function.

Def. (Cumulative distribution function)

Let X be a real-valued random variable, then the cumulative distribution function
(CDF) of X is the function FX : R −→ [0, 1] defined by

FX(x) = FµX (x) = P
(
X ≤ x

)
Since the property of convergence in distribution is quite hard to prove for any bounded test function
f , we want to characterize this property with respect to something else in order to make it easier to
check it.

Example (Cdf of a uniform distribution)

18



1.1 Convergence of random variables Lecture 1: Convergence and limit theorems

Let µn = Unif[0, 1n ], then the cdf is

Fn(x) =


0 if x < 0

nx if 0 < x < 1
n

1 if x ≥ 1
n

x

1

11
2

1
4

Figure 5: Convergence of the cdf of the uniform distribution to the unit step function.

The Dirac delta measure has a very simple cdf given by the unit step function,

F (x) = 1[0,∞)(x),

and in this example we have convergence of Fn(x) → F (x) in all points x ∈ R except for
x = 0, since Fn(0) = 0 for all n ∈ N.

Theorem 9 (Characterization of d−→ using the cdf)

Let (µn)n∈N be a sequence of distributions and µ be a distribution, then we have that

µn
d−→µ ⇐⇒ Fµn(x)

n→∞−−−−→ Fµ(x),

for all x that are points of continuity of Fµ.

Proof.
No.

Remark There can also be convergence in points of discontinuity, but it is not guaranteed in
general.
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Example (of convergence in the points of discontinuity)

µn = δ− 1
n
, then it is clear that in this case also µn → δ0, and continuity is guaranteed for

all points x > 0. However, in this case the cdf is such that

Fµn(0) = Fδ− 1
n

(0) = 1 for all n ∈ N,

therefore lim
n→∞

Fµn(0) = 1 and convergence is satisfied both in the points of continuity as
well as in the point of discontinuity of F .

Let us now discuss another important function when dealing with real-valued random variables,
which also allows a convenient characterization of d−→.

Def. (Characteristic function of a distribution)

Let µ be a distribution, then we say that the characteristic function (CHF) of µ is the
function ϕ : Rd −→ R defined by

ϕ(η) =

∫
Rd
ei〈η,x〉µ(dx).

Def. (Characteristic function of a random variable)

Let X be a random variable with distribution µ on Rd, then the characteristic function
of X is the function ϕ : Rd −→ R defined by

ϕX(η) = ϕµX (η) = E
[
ei〈X,η〉

]
.

Remark If µ ∈ AC has density f , then we can write it exactly as a Lebesgue integral and it equals
to a scaled and “slowed” version of the Fourier transform,

ϕ(η) =

∫
Rd
ei〈η,x〉f(x)dx.

Theorem 10 (Lévy, characterization of d−→ using the CHF)

Let (µn)n∈N be a sequence of distributions and µ be a distribution, then

a) µn
d−→µ =⇒ ϕn(η)

n→∞−−−−→ ϕ(η) for any η ∈ Rd.

b) ϕ n→∞−−−−→ ϕ everywhere, with ϕ continuous in η = 0, then ϕ is a CHF of a distribution
µ and µn

d−→µ.

Remark CHF’s have some interesting properties, most notably

1. ϕ(0) = 1 since E
[
ei〈0,x〉

]
= E

[
1
]

= 1.
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1.2 Limit theorems Lecture 1: Convergence and limit theorems

2. ϕX is continuous in ν = 0, which we can check by the limiting procedure

lim
η→0

ϕX(η)
?
= ϕX(0) = 1.

Since eiϑ = cosϑ + i sinϑ is always equal in norm to 1 (Euler’s formula), we can apply the
dominated convergence theorem

lim
η→0

E
[
ei〈X,η〉

] DCT
= E

[
lim
η→0

ei〈X,η〉
]

= E
[
1
]

= 1.

1.2 Limit theorems

Notation: If (Xn)n∈N is a sequence of random variables, we define the partial sums and partial
means by

Sn = X1 +X2 + . . .+Xn,

Mn = Sn/n.

Theorem 11 (Law of large numbers)

Let (Xn)n∈N be a sequence of random variables in L1(Ω,P) that are i.i.d with mean
E
[
Xn

]
= µ, then

› (Weak L.L.N.) Mn
d−→µ and therefore Mn

P−→µ since µ is a constant.

› (Strong L.L.N.) Mn
a.s.−−→µ

Proof.
We only prove the weak form since the strong one is very difficult. However, even for the weak form
we would have to prove Lévy’s theorem, which is also quite difficult. We will use the following lemma
for proving the weak law of large numbers:

Lemma 2 (First derivative of the CHF)

For the CHF of a random variable X we can

∂ϕX(η)

∂η
=

∂

∂η
E
[
eiηX

]
= E

[ ∂
∂η
eiηX

]
(DCT since)

= E
[
iXeiηX

]
And computing this value in η = 0, we have that

∂

∂η
ϕX(η)

∣∣∣
η=0

= iE
[
X
]
.

We want to prove that the CHF of Mn converges to that of δµ and then use Lévy’s theorem:

lim
n→∞

ϕMn
(η)

?
= eiηµ = E

[
eiηµ

]
.
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Start by explicitly writing the CHF of Mn:

ϕMn
(η) = E

[
eiη

1
n

∑n
j=1Xj

]
= E

[ n∏
j=1

ei
η
nXj

]
= E

[
ei
η
nX1

]n (i.i.d)

= ϕ
( η
n

)n
.

Using Lemma 2 we can apply a Taylor expansion of ϕMn
around η = 0:

ϕMn(η) =

(
1 +

η

n
iµ+ o

( 1

n

))n

=
(

1 +
ηiµ+

n→∞−−−−→0︷ ︸︸ ︷
n · o

( 1

n

)
n

)n
= eiηµ (standard limit)

Remark Had we also assumed that Xn ∈ L2(Ω,P) with V
[
Xn

]
= σ2, then this would’ve become

a one-line proof since

P
(
|Mn − µ| > ε

)
≤

E
[ L2converg.︷ ︸︸ ︷
|Mn − µ|2

]
ε2

=
σ2

nε2

n→∞−−−−→ 0.

Using this, we have convergence in L2 which implies P−→ and d−→. These inequalities are useful as a
very basic estimate of the speed of convergence for Monte Carlo simulations and confidence regions,
in order to provide error bounds. However, proper estimates are more refined and will be discussed
later on.
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Lecture 2: Central limit theorems
2021-10-21

One could already be satisfied with the LLN, which describes the behaviour of the empirical average
Mn. However, this doesn’t tell us what the distribution of Mn will look like as n −→∞.

Given the ways we saw in the examples, how does the law µMn approach µ?

We can first compute some quantities related to Mn:

› E
[
Mn

]
= µ

› V
[
Mn

]
= σ2

n

We will try now to normalize the empirical average and see what we obtain as a result:

M̃n =
Mn − µ
sd(Mn)

=

√
n(Mn − µ)

σ
.

Theorem 12 (Central limit theorem)

Let (Xn)n∈N be a sequence of i.i.d r.v. in L2(Ω,P), i.e. with finite variance, then we have
that the normalized empirical average M̃n is such that

M̃n
d−→N0,1.

Proof.
We use the following lemma for proving the central limit theorem:

Lemma 3 (Second derivative of the CHF)

We have that if X ∈ L2(Ω,P),

∂2

∂η2
ϕX(η) =

∂

∂η
E
[
iXeiηX

]
= −E

[
X2eiηX

]
DCT if E[X2] <∞

And by computing the derivative in η = 0,

∂2

∂η2
ϕX(η)

∣∣∣
η=0

= −E
[
X2
]
.

Consider µ = 0, σ2 = 1 which is not restrictive by the properties of the normal distribution.

Mn − µ
σ

=
1
n

∑n
j=1Xj − µ
σ

=
1

n

n∑
j=1

(
Xj − µ
σ

)
︸ ︷︷ ︸

Zj

,

and the Zj are such that E
[
Zj
]

= 0,V
[
Zj
]

= 1.
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Now, the CHF of M̃n = Sn/
√
n can be written as

ϕM̃n
(η) = ϕ Sn√

n
(η)

= E
[
eiη

∑Xj
j=1 /

√
n
]

= E
[
eiηXj/

√
n
]n (i.i.d)

= ϕX1
(η/
√
n)n

=

(
1 +

1

2

η2

n
· (−1) + o

( 1

n

))
(Taylor + Lemma 3)

=

(
1 +
− 1

2η + n · o
(

1
n

)
n

)n
n→∞−−−−→ e−

η2

2 ,

which is the characteristic function of a N0,1 random variable. The second-order expansion of ϕX1

does not contain the first term since the E
[
Zj
]

= 0, and we use Lemma 3 for the variance.

Remark We can think of the CLT as telling us that for large enough n,
√
n(Mn − µ)

σ
∼ N0,1 =⇒ Mn ∼ Nµ,σ2n

d−→ δµ.

We had already computed the expected value and variance,.r the CLT also tells us the shape of the
distribution. Moreover, since Sn = n ·Mn we also know that the partial summations behave as a
normal distribution,

Sn ∼ Nnµ,nσ2 ,

which however does not weakly converge to any probability distribution.

Example (Bernoulli game)

We consider a Bernoulli sequence of random variables: let (En)n∈N be a sequence of
independent events, such that P

(
En
)

= p for all n. Set Xn := 1En and consider the sequence
of partial sums Sn =

∑n
j=1Xj ∼ Binom(n, p).

Since µ = E
[
Xn

]
= p and σ2 = V

[
Xn

]
= p(1 − p), the CLT tells us that the empirical

average is such that √
n(Mn − p)√
p(1− p)

d−→N0,1,

and therefore Sn
d−→Nnp,np(1−p), which is called the De Moivre-Laplace approximation.

24

https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem
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Example

Let (Yn)n∈N be a random sample of a random variable X, which means Yn
i.i.d∼ X. We fix a

real number x ∈ R and we consider the empirical cumulative distribution function of X,

Fn(x) :=
1

n

n∑
i=1

1(−∞,x](Yi).

Intuitively we expect that Fn
n→∞−−−−→ FX , which is actually a consequence of the CLT. By

defining
Xj = 1(−∞,x](Yj),

then we find that

› Xj are independent (transformation of i.i.d r.v.)

› E
[
Xj

]
= P

(
Yj ≤ x

)
= P

(
X ≤ x

)
= F (x).

Therefore, we have that

i. LLN =⇒ Fn(x)
a.s.−−→FX(x)

ii. CLT =⇒
√
n
(
Fn(x)− FX(x)

) d−→N0,FX(x)(1−FX(x)).

However, we can also prove a convergence result which is stronger than the pointwise con-
vergence.

Theorem 13 (Glivenko-Cantelli)

With the assumptions defined above, the empirical cdf of X is such that

sup
x
‖Fn(x)− FX(x)‖ a.s.−−→ 0.

Proof.
No.

Unfortunately, with the above theorem we don’t have an estimate for the number of observations
needed for an asymptotical normal behaviour. However we can state the following result, which holds
for any random variable X:

Theorem 14 (Berry-Essen)

If Xn is such that E
[
|Xn|3

]
<∞, then if Φ(·) is the cdf of a N0,1 random variable we have

that

sup
x
|FM̃n

(x)− Φ(x)| ≤ c
E
[
|X|3

]
σ3
√
n
,

with c ≈ 0.79 . . .
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Proof.
No.

Remark The result holds for all possible choice of distributions, and although this convergence
can be considered slow – o(n−1/2) – we usually observe a faster convergence behaviour when using
common distributions.

Example (Counterexample when E(Xn) is not defined)

Let µXn(dx) = 1
π ·

1
1+x2 dx. If we were in a convergence situation, then we would expect

µMn → δ0. However, this random variable is such that

ϕMn(η)
iid
= ϕX1

( η
n

)n
= e−|

η
n |·n (CHF of Cauchy distrib.)

= e−|η|

= ϕX1
(η).

Therefore, we see that Mn ∼ X1 for all n and thus it does not converge to 0. This is a
consequence of the fact that X does not have a finite integral, E

[
|X1|

]
= +∞.

We now state some useful generalizations of the central limit theorem, which extend its applicability
to the non-identically distributed case.

Theorem 15 (Lyapunov’s CLT)

Let (Xn)n∈N be a sequence of r.v. such that

i. µn = E
[
Xn

]
, σ2

n = V
[
Xn

]
<∞

ii. Xn are independent

iii. There exists δ > 0 such that

lim
n→∞

1

ϑ2+δ

n∑
j=1

E
[
|Xj − µj |2+δ

]
= 0,

where ϑ2
n =

∑n
j=1 σ

2
j .

Then, we have that
1

ϑn

n∑
j=1

(Xj − µj)
d−→N0,1.

Proof.
No.
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Theorem 16 (Lindeberg’s CLT)

Same as Lyapunov’s CLT but with the third condition replaced by

iii′. For all ε > 0,

lim
n→∞

1

ϑ2
n

n∑
j=1

E
[
(Xj − µj)2

1[εϑn,∞)

(
|Xj − µj |

)]
= 0

Proof.
No.

Exercises

1. Prove that Lindeberg’s CLT =⇒ Lyapunov’s CLT.

2. Starting from p. 176 of Gut (2009): Ex. 2, 19, 21, 24, 32.
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Lecture 3: Simulations and independence
2021-10-28

3.1 Monte Carlo simulation

In this lecture we start by considering some applications of the convergence theorems we discussed
earlier, in particular under the context of Monte Carlo simulation.

Consider a sequence of i.i.d random variables X1, X2, . . . , Xn, . . . of a given r.v. X. For the sake of
simplicity we will assume that X ∈ L2(Ω,P), i.e.E[X] = µ <∞

V[X] = σ2 <∞

The goal of Monte Carlo simulation is to use the observed sample to approximate the expected value
µ using the LLN and/or CLT. In particular, we will use the fact that by the LLN,

Mn =
1

n

n∑
j=1

Xj
a.s.−−→µ.

Remark If we consider f measurable and such that f(X) ∈ L2(Ω,P), then the transformed se-
quence f(X1), f(X2), . . . , f(Xn) is a sample from f(X). Therefore,

M (f)
n =

1

n

n∑
j=1

f(Xj)
a.s.−−→ f(µ).

Therefore, an interesting question to pose is the following one:

What is a good choice of n in order to obtain a good accuracy for the simulation?

We will try to answer this question by considering two approaches. Firstly, using the fact that
X ∈ L2(Ω,P), we can apply Chebyshev’s inequality (corollary 1) and assert that for any fixed
tolerance ε > 0:

P
(
|Mn − µ| ≥ ε

)
≤ σ2

nε2
=⇒ P

(
|Mn − µ| < ε

)
≥ 1− σ2

nε2
.

We then find the minimum number of observations n ∈ N such that, for some specified probability
p, we have P

(
|Mn − µ| < ε

)
≥ p for all n ≥ n:

1− σ2

nε2
≥ p ⇐⇒ n ≥ σ2

ε2(1− p)
= n. (2)

Remark We have that the limit n = n(σ2, ε, p) is a function of three quantities, of which σ2 is
not known and is usually estimated either from the sampled data or from previous simulations.
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Moreover, from Equation (2) we notice that the minimum number of samples is such that

n(σ2, ε, p) −→ +∞ if either


σ2 −→∞
ε −→ 0+

p −→ 1−

The convergence however is quite slow and can be refined in terms of p by using the Central Limit
Theorem. If n is large enough, we know by the CLT that

Mn − µ ∼ N0,σ
2

n

,

therefore we compute the approximate coverage probability

P
(
|Mn − µ| < ε

) n�1
≈ P

(∣∣∣ (Mn − µ)
√
n

σ︸ ︷︷ ︸
d−→N0,1

∣∣∣ < √nε
σ

)
sym.
= 2

(
Φ

(√
nε

σ

)
− 1

2

)
= 2Φ

(√
nε

σ

)
− 1,

where the last equalities come from the symmetry of the Gaussian density function. Now we want
to solve the inequality

2Φ

(√
nε

σ

)
− 1 ≥ p monot.

=⇒
√
nε

σ
≥ Φ−1

(
1 + p

2

)

⇐⇒ n ≥ σ2

ε2
·
[
Φ−1

(
1− p

2

)]2

.

What we claim is that the factor is sharper than the previous result 1
1−p in Equation (2), hence it

is what is used in practice when computing the confidence interval.

1

1/(1− p)

Φ(−1)((1− p)/2)2

0 1

Figure 6: Sharpness of the bounds when using the two approximations.
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3.2 Conditioning

Conditional probability and conditional random variables become an extremely hard topic when
dealing with events that have probability zero, i.e. for continuous distribution and continuous-time
stochastic processes.

Example (Dice roll)

Consider the rolling of two dice, we are interested in the outcome. We consider the sample
space Ω = {(i, j) : i, j = 1, . . . , 6}. Since we have discrete events there is no problem in
considering the σ-algebra given by the power set F = P(Ω). As for the probability measure
on the measurable space we use the uniform probability P = UnifΩ on Ω:

P
(
{(i, j)}

)
=

1

36
.

Define two variables X1, X2 such that Xj is the result of the jth throw,

X1(ω) = X1

(
(ω1, ω2)

)
= ω1.

X2(ω) = X2

(
(ω1, ω2)

)
= ω2.

Consider the event A = “the sum of the two die is smaller or equal than 6” and suppose that
we win when this event occurs,

A = {X1 +X2 ≤ 6} =⇒ Y = 1A − 1Ac is the expected win.

Therefore, E[Y ] = P(A)− P(Ac) = (15− 21)/36 = −1/6.

Assume now that the dice are instead thrown sequentially, i.e. we observe at t = 1 the
outcome X1 = 5. No one would think now that the chances of winning would be the same
as before, so the observer should update their belief about their probabilities. Since now we
can only win if the next throw is X2 = 1, it’s immediate to find that

P
(
A|X1 = 5

)
= P

(
X2 = 1

)
=

1

6
.

Remarks

› To calculate P(A|X1 = 5) we assumed some sort of independence structure, i.e.

A ∩ {X1 = 5} = {X1 = 5} ∩ {X2 = 1}.

› How do we update our belief if these random variables are not independent?

› What does it mean for two random variables to be independent in the first place?

To answer these questions we need a good definition of conditional probability, from which we will
derive a notion of conditional expected value

E[Y ] E[Y |X1 = 5] =
1

6
− 5

6
.
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Def. (Conditional proability)

Let A,B ∈ F be events with P(B) > 0, then we say that the conditional probability of
A given B is given by

P(A|B) =
P(A ∩B)

P(B)

B

A

Figure 7: In some sense B takes place of the event space Ω when calculating the probability
of the event A|B. We can interpret this by saying that the admissible σ-algebra for the new
observation is updated upon observing the event B.

Remark Observe that the function that maps A 7→ P
(
A|B

)
= P|B(A) is a new probability measure

for any AinF , since it satisfies the Kolmogorov axioms:

P|B(Ω) = 1

P|B(Ac) = 1− P|B(A)

P|B
( ⋃
n∈N

An

)
disj.
=
∑
n∈N

P|B(An)

Def. (Conditional expectation)

For any Y ∈ L1(Ω,P) we define the conditional expectation of Y given event B as the
expected value w.r. to the newly-defined conditional probability measure,

E
[
Y |B

]
= EP|B

[
Y
]

Remark We can prove that E[Y |B] = 1
P(B)E

[
Y ·1B

]
, which yields a convenient way of calculating

the conditional probability only by using the a priori probability measure P.

In general, we can define any conditional quantity that we already defined for standard random
variables, such as conditional variances, etc.

If X ∈ L2(Ω,P) is a random vector, X : Ω −→ Rn then its covariance matrix is

Cov(X) = E
[
(X − E[X])(X − E[X])>

]
.
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When conditioning w.r. to an event, we have the conditional covariance matrix

Cov(X|B) = EP|B
[
(X − E[X])(X − E[X])>

]
.

3.3 Independence

Since we have a satisfactory notion of conditional probability, by intuition we could define two events
A and B to be independent if

P(A|B) = P(A).

Remark If P(A),P(B) > 0 then we have that by Bayes’ formula,

P(A|B) =
P(B|A)P(A)

P(B)
.

According to our intuitive definition, then we obtain that P(B) = P(B|A). The main problem however
is when P(B) = 0, which is when the theory of probability diverges into different approaches.

3.3.1 Kolmogorov’s approach

If we take for granted the definition of independence as P(A|B) = P(A), then we obtain the following
identity:

P(A ∩B) = P(A|B) · P(B) = P(A)P(B).

Therefore, we can always go back in the other direction by using this as a definition of independence
and re-discovering that P(A|B) = P(A).

Def. (Independence of events)

Two events A,B ∈ F are said to be independent events if

P(A ∩B) = P(A)P(B).

Remark If P(A) = 0 and/or P(B) = 0, then we have that

P(A) · P(B) = 0
moton.

= P(A ∩B).

Example

If A ∩ B = ∅ with P(A) = 0 then according to the definition that we gave this would mean
that A and B are independent. However,

A ∩B = ∅ =⇒ A,B are logically dependent.

With Kolmogorov’s approach we can just say that we ignore these philosophical subtleties
and work with events that are meaningful in practice.

32



3.3 Independence Lecture 3: Simulations and independence

Instead, in the approach of de Finetti we define P(A|B) = P(A) and consider the logical coherence
of the events, recovering as a theorem the relationship

P(A|B) =
P(A ∩B)

P(B)
.

With Kolmogorov’s approach it is possible to define P(A|B) even for events that have probability
zero.

Def. (Correlated events)

Two events A,B ∈ F are positively correlated if P(A|B) = P(A), which can be seen to be
true if and only if also P(B|A) > P(B) (using Bayes’ theorem).

Sometimes we observe one and only one event out of a set of events, i.e. we have a partition, and we
would like to define how the probability measures get updated.

Example (Dice roll (cont.))

Consider all events Ei = {X1 = i}, i = 1, . . . , 6, then the family of events

E = (Ei)i=1,...,6

is a partition and we can define the family of conditional measures given the partition of
events whose conditional value is still unknown to us

P(A|E) =

6∑
i=1

P(A|Ei)︸ ︷︷ ︸
numbers

· 1Ei︸︷︷︸
r.v.

which is a random measure. Therefore, we can compute the conditional expected value given
the partition E

E
[
Y |E

]
=

6∑
i=1

E
[
Y |Ei

]︸ ︷︷ ︸
numbers

· 1Ei︸︷︷︸
r.v.

.

This type of structure is useful to model stochastic processes that evolve over time as the
new partitions are observable and (eventually) observed.

Def. (Conditional probability w.r. to a partition)

Let E be a countable partition of events with positive probability,

› E = (En)n∈N, P(En) > 0 for all n ∈ N.

› En ∩ Em = ∅ for all n 6= m.

›
⋃
n∈NEn = Ω.

Given A ∈ F , we define the conditional probability w.r. to the partition E as the
random measure given by

P(A|E) =
∑
n∈N

P(A|En) · 1En
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Remark Consider the function A 7→ P(A|E) :=, then this is a random probability measure, i.e. by
letting A vary over all possible events we have a function

P|E : F −→ [0, 1].

Def. (Conditional expectation w.r. to a partition)

For any Y ∈ L1(Ω,P) we can define the conditional expectation given the partition as
the expected value under the random probability measure P|E ,

E
[
Y |E

]
= EP|E

[
Y
]

=
∑
n∈N

E
[
Y |En

]
· 1En

This could be the end of the story, unless we also want to consider a) uncountable partitions and b)
events with zero probabilities, which is the case for absolutely continuous probability measures and
continuous-time stochastic processes.

Example (Dice rolls (cont. ii))

This time we consider two continuous dice, where the probability space is now
Ω = [0, 6] × [0, 6], F = B, P = UnifΩ = Unif[0,6] ⊗ Unif[0,6]. We consider the same vari-
ables,

X1(ω) = ω1

X2(ω) = ω2

A = {X1 +X2 ≤ 6}

Y = 1A − 1Ac

Since we have a uniform distribution, P(A) = 1
2 and E[Y ] = 1

2 −
1
2 = 0. Let us now assume

that we observe the event {X1 = 5}, again we have the intuition to change our probabilities
and expected value to

P(A|X1 = 5︸ ︷︷ ︸
P(·)=0

) = P(X2 ≤ 1) =
1

6
.

E
[
Y |X1 = 5

]
=

1

6
− 5

6
= −2

3
.

However both these quantities and the notion of independence are not defined by means of
the previous definitions, since the conditioning event has probability zero.

In this case, E = ({X1 = k})x∈[0,6].

As it turns out, in order to obtain a formal definition of conditional probability we have to work
the other way around: first by defining a good notion of E[Y |E ] and subsequently deduce a value for
P(A|E).
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Lecture 4: Conditional expectation
2021-11-04

Last lecture we considered a countable partition P = {Ei :
⋃
i∈NEi = Ω,P(Ei) > 0} and we defined

the conditional probability w.r. to P:

P(A|P) =
∑
i∈N

P(A|Ei) · 1Ei .

We discuss now the process of conditioning w.r. to more general (possibly uncountable) partitions
and will start from the following observation.

Observation Consider a random variable X ∈ L1(Ω,F ,P), then we have that the random variable
defined by the expected value w.r. to the countable partition P,

E[X|P] =
∑
i∈N

E[X|Ei] · 1Ei ,

satisfies the following properties:

i. This r.v. is σ(P)-measurable (i.e. it is observable) since P is a countable partition and there-
fore we simply have that

σ(P) = {all possible unions of elements of P}.

ii. For any A ∈ σ(P), we have that

E[X|A] = E
[
E[X|P]︸ ︷︷ ︸

r.v.

|A
]
,

Proof.

A ∈ σ(P) ⇐⇒ A =
⋃
j∈J Ej with J countable, therefore we can write the following chain of

equations

E
[
E[X|P]

∣∣A] =
1

P(A)

∫
A

E[X|P] dP

=
1

P(A)
E
[∑
i∈N

E[X|Ei] ·
1Ei∩A︷ ︸︸ ︷
1Ei · 1A

]
(A is union of E′js)

=
1

P(A)
E
[∑
j∈J

constant︷ ︸︸ ︷
E[X|Ej ] ·1Ej

]
=

1

P(A)
·
∑
j∈J

1

��
�P(Ej)
· E[X|Ej ] ·��

�P(Ej)

=
1

P(A)
E
[∑
j∈J

X · 1Ej
]

= E[X|A].

35



4.1 General case Lecture 4: Conditional expectation

4.1 General case

We start from defining the conditional expectation of X and work our way up to the definition of
conditional probability. Let G ⊂ F be a sub-σ-algebra of events.

Def. (Version of the conditional expectation of X given G)
Let X ∈ L1(Ω,F ,P), we say that a random variable Z is a version of the conditional
expectation of X given G if Z satisfies the following properties:

i. Z is G-measurable

ii. For any A ∈ G such that P (A) > 0,

E[X|A] = E[Z|A] ⇐⇒ 1

P(A)
E[X · 1A] =

1

P(A)
E[Z · 1A]

We denote by E[X|G] the set of all such r.v.’s.

Remarks

› Sometimes Z is unique, but in general there might be equivalent random variables up to a set
of measure zero, therefore E[X|A] defines an equivalence class.

› Given Z ∈ E[X|G] and Z ′
a.s.
= Z it is not sufficient to guarantee that Z ′ ∈ E[X|G] since Z ′

might not be measurable w.r. to G. For the simplest example of such Z ′, consider if Gc is a set
of measure zero and

Z ′ =

Z if ω ∈ G
1 if ω ∈ Gc

Clearly, Z ′ is not measurable w.r. to G since Z ′ = 1 if ω ∈ Gc. However, since Gc has measure
zero, we also have Z a.s.

= Z ′.

Prop. 2 (Almost sure equality of versions)

If Z,Z ′ ∈ E[X|G], then Z ′ a.s.= Z.

Proof.
Consider for simplicity the case X ∈ R, then we are going to show that for any choice of r.v.’s X,
X ′ and Z ∈ E[X|G] and Z ′ ∈ E[X ′|G], we have

X
a.s.
≤ X ′ =⇒ Z

a.s.
≤ Z ′.

Then we will choose X ′ = X and since the reverse holds because of symmetry we obtain a double
inequality which implies strict equality.
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By contradiction, assume instead that P(Z > Z ′) > 0, which is the same of saying that Z��
a.s.
≤Z ′.

Then, we would have that

0
!!
< E[(Z − Z ′) · 1Z>Z′ ] = E[Z · 1Z>Z′ ]− E[Z ′ · 1Z>Z′ ] ({Z > Z ′} ∈ G)

= E[X · 1Z>Z′ ]− E[X ′ · 1Z>Z′ ] (def)

= E[(X −X ′) · 1Z>Z′ ] ≤ 0. (X
a.s.
≤ X ′ by Hp.)

Since we had assumed that X
a.s.
≤ X ′ we find a contradiction, and therefore we conclude that

P(Z > Z ′) = 0.

Corollary 2 (Conditional r.v.’s are equivalence classes)

The set of E[X|G] is an equivalence class on the set of G-measurable random variables w.r.
to the “a.s.= ” operator.

Remarks

› This is important to remember, since in all textbooks and articles the equivalence class E[X|G]

is treated as a single random variable. All equalities and inequalities are interpreted as valid
for a chosen single representative of the equivalence class.

› Any other Z that is G-measurable has to be constant over the events Ei of the countable
partition (otherwise Z−1 would not be a union of Ei’s). If Z was a version of E[X|G], then it
would be constantly equal to E[X|Ei] on Ei, which is exactly the expected value defined by
cases =⇒ E[X|P] is unique.

Example (Trivial conditioning)

Consider G = σ(X), then clearly (i) and (ii) are trivially satisfied by taking Z = X. With
an abuse of notation, we are going to write X = E[X|G].

The following theorem guarantees existence of E[X|G] for a particular subset of random variables
X.

Theorem 17

Let X ∈ L1(Ω,F ,P), then for any sub-σ-algebra G it holds that E[X|G] is not empty.

Proof.
The proof is based on the Radon-Nikodym theorem between dominated probability measures.

37

https://en.wikipedia.org/wiki/Equivalence_class


4.1 General case Lecture 4: Conditional expectation

Theorem 18 (Properties of E(X|G))
Let X,Y ∈ L1(Ω,F ,P), G ⊂ F . Then, the following properties hold:

1. (Linearity) For any α, β ∈ R, E[αX + βY |G] = αE[X|G] + βE[Y |G].

2. (Monotonicity) If X ≤ Y a.s. then E[X|G] ≤ E[Y |G].

3. If X is G-measurable, then E[X|G] = X.

4. If σ(X) ⊥ G then E[X|G] = E[X].

5. (Tower property) If H ⊂ G, then E[X|H] = E
[
E[X|G]

∣∣H].
6. If Y is G-measurable and bounded, then E[Y ·X|G] = Y · E[X|G].

7. If Y is independent of X and G, then E[Y ·X|G] = E[Y ] · E[X|G].

Proof.

4 : Let Z = E[X], then clearly (i) is satisfied since a constant random variable is measurable w.r.
to any σ-algebra. As for (ii), for any event A ∈ G such that P(A) > 0 we can write

E[Z|A] = E
[
E[X]|A

]
=

1

P(A)
· E
[
E[X] · 1A

]
=

1

P(A)
· E[X] · E[1A] (E[X] is a constant)

=
1

P(A)
E[X · 1A] (indep.)

= E[X|A]

5 : Let Z ∈ E[X|H] and Y ∈ E[X|G] with H ⊂ G, we want to prove that Z ∈ E[Y |H]. (i) is
satisfied since Z ∈ E[X|H] is H-measurable by definition of version of E[X|H]. As for (ii), for
any A ∈ H such that P(A) > 0, we have that since H ⊂ G,

E[Z|A]
def.
= E[X|A]

A∈G
= E[Y |A].

6 : (ii) ⇐⇒ E[X ·W ] = E[Z ·W ] for any r.v. W that is G-measurable and bounded.

Remarks

› A,B ⊂ F families of events are said to be independent if A ⊥ B for any A ∈ A and B ∈ B.

› We say that a r.v. Y is independent of a r.v. X and a σ-algebra G if σ(Y ) ⊥ σ
(
σ(X) ∪ G

)
.

› Property (5) means that reducing the information from F → H can be done by reducing
multiple times, F → G → H.
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Example (Conditioning w.r. to a random variable)

In the particular case of G = σ(Y ), then we can define the following random variable,

E[X|Y ] := E[X|σ(Y )]

Lemma 4 (Doob’s theorem)

Let X ∈ L1(Ω,F ,P) and Y r.v. that takes values in another measurable space, in this case
assume (Rn,B). Then X is σ(Y )-measurable ⇐⇒ there exists a (possibly not unique)
measurable function ϕ : Rn → Rd such that

X = ϕ(Y ).

(Ω,F) (R,B)

(Rn,B)

X

Y ϕ

Figure 8: Schematization of Doob’s theorem.

Corollary 3 (Existence of the regression function)

There exists a measurable function ϕ : Rn → Rd, which we call regression function, such
that

ϕ(Y ) = E[X|Y ].

Proof.
We have that if the event {Y = y} has non-negligible probability, then

E[X|(Y = y)]
def
= E

[
E[X|Y ]︸ ︷︷ ︸

Doob→ϕ(Y )

∣∣(Y = y)
]

= E[ϕ(Y )|(Y = y)] = E[ϕ(y)] = ϕ(y).

Remarks

› ϕ might not be unique because (i) Doob’s theorem does not guarantee unicity and (ii) it
belongs to the equivalence class of conditional expectations.

› ϕ is however almost-surely unique w.r. to the law µY of Y .

Notation The function ϕ is denoted as ϕ(Y ) = E[X|Y = y], which is not the conditional expec-
tation given the event {Y = y} unless this set has positive probability.
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Example

Consider the particular case in which X = 1X∈H for a Borel set H ∈ B. Then, we can
consider the following expected value

E[1X∈H |G] =: µX|G(H),

which we call the conditional law of X given G calculated in the set H.

We can check that it is a probability measure

› If H = Rd, we obtain E[1X∈Rd |G] = 1.

› If H = ∅, then E[1X∈∅|G] = 0.

› Given a sequence (Hn)n∈N of disjoint sets, we have

E[1X∈
⋃
n∈NHn

|G] = E
[∑
n∈N

1X∈Hn |G
]

=
∑
n∈N

E[1X∈Hn |G].

The problem is that this holds in the almost-sure sense, i.e. everything is defined in terms
of a representative of the equivalence class.

Theorem 19 (Regular conditional law)

Given X ∈ L1(Ω,F ,P) and G ⊂ F there always exist a family
(
µX|G(ω)

)
ω∈Ω

of probability
measures on Rd such that for any Borel set H,

µX|G(H) = E[1X∈H |G].

Such family is called the regular version of conditional law of X given G.

Proof.
No.

Using this definition of regular conditional law, there are many results that we can compute that
will give the usual known results.

Theorem 20 (Conditional expectation)

If f : Rd −→ R and f(X) ∈ L1(Ω,F ,P), then we can write

E[f(X)|G] =

∫
Rd
f(x)µX|G(dx).

Example (Conditional expected value)

40



4.1 General case Lecture 4: Conditional expectation

If f = id, then this becomes the conditional expected value of X given G,

E[X|G] =

∫
Rd
xµX|G(dx)

Theorem 21 (Expectation of the conditional measure)

Following from the tower property of the conditional expectation, we have that

µX(H) = E[µX|G(H)]

Example

Choosing G = σ(Y ) we obtain the conditional law of X given Y as µX|Y := µX|σ(Y ).

Theorem 22 (Joint distribution of two random variables)

Let X,Y be r.v. with values on Rd and Rn, respectively. Then, we have that for each
H ∈ B(Rd) and K ∈ B(Rn),

µ(X,Y )(H ×K) = E[µX|Y (H) · 1Y ∈K ].

Remark This property can be used to prove that a joint random variable (X,Y ) is absolutely
continuous w.r. to Lebesgue measure, when starting from the conditional distribution X|Y and the
marginal distribution of Y , as long as we can apply Fubini’s theorem.

Theorem 23 (Conditional law as a function of Y )

If X,Y are r.v.’s on Rd and Rn respectively, then there exists a family (µX|Y=y)y∈Rn of
probability measures on Rd such that

i. For each H ∈ B, the function y 7→ µX|Y=y(H) is measurable.

ii. (µX|Y=y)
∣∣
y=Y

= µX|Y

Notation Sometimes we can find this written as E[1X∈H |Y = y] and the conditional probability
function coincides with this quantity if P(Y = y) > 0.

Theorem 24 (Conditional expected value of a function)

Let f : Rd −→ R such that f(X) ∈ L1(Ω,F ,P), then the regression function

E[f(X)|Y = y] =

∫
Rd
f(x)µX|Y=y(dx).
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The last thing to study is what happens when X and Y have an absolutely continuous joint
probability distribution, i.e. they admit a joint density.

If (X,Y ) are jointly absolutely continuous, then X and Y are also absolutely continuous and

γY (y) =

∫
Rd
γ(X,Y )(x, y) dx.

Theorem 25 (Conditional density of two jointly a.c. random variables)

If (X,Y ) are jointly absolutely continuous, then for any y ∈ Rn such that γY (y) > 0 the
conditional law function µX|Y=y is absolutely continuous with density given by

γX|Y=y(x) =
γ(X,Y )(x, y)

γY (y)
.

Remark For any Borel set H, µX|Y=y(H) =
∫
H
γX|Y=y(dx)

Corollary 4

For two jointly absolutely continuous random variables, we have that

E[f(X)|Y = y] =

∫
Rd
f(x)γX|Y=y(x) dx,

whereas the unconditional expected value is

E[f(X)] =

∫
Rn

∫
Rd
f(x)γ(X|Y=y)(x)γY (y) dy dx.

Exercises Given in the notes.
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Lecture 5: Introduction to stochastic processes
2021-11-11

When we think about random variables, we can visualize them as random numbers which are
determined by the result ω of some experiment. On the other hand, sometimes events unfold in
time and the random number is replaced by a sequence of random variables Xt(ω) indexed by time t.

We replace the concept of random numbers with the concept of random trajectories, which can be
thought as a random countable sequence (discrete time) or a random function (continuous time).
Stochastic processes can be indeed be seen equivalently as

› A sequence of random variables.

› A random variable that takes values in the space of sequences.

Def. (Discrete time stochastic process)

A discrete time stochastic process is a family of random variables X = (Xn)n∈I defined
on (Ω,F ,P) with I ⊆ N.

Equivalent definition We could also equivalently define a stochastic process as a random variable
on the space of sequences of dimension |I|, X : Ω→ (Rd)I , where (Rd)I = {(xn)n∈I : xi ∈ Rd}.

Notation (Rd)I is called the trajectory space. If x ∈ (Rd)I , then x is called a trajectory.

Example (Finite time stochastic process)

If I = {1, . . . , N} then the set of trajectories (i.e. the codomain of the stochastic process)
are

(Rd)I = {(x1, x2, . . . , xN ) : xi ∈ Rd}.

However we can think of X as a family (X1, X2, . . . , XN ) such that Xi is a random variable
with values on Rd.

Figure 9: Trajectory of a stochastic process (Wiener process), where every random variable is
a three-dimensional Gaussian distribution.
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Although the definition above is intuitively correct, from a mathematical point of view we need to
formalize the measurability of the second definition of the process. To do this, we need to equip the
trajectory space (Rd)I with a suitable σ-algebra such that the two definitions are equivalent. Such
a σ-algebra (omitting proof) is the product σ-algebra generated by the rectangles and denoted by
BI , which if I ⊆ N is finite then becomes the usual one,

BI =
⊗
i∈I
Bd, if |I| <∞.

Example

If every Xn is defined on R and I = {1, 2, 3}, then the product σ-algebra is

BI = B(R)⊗ B(R)⊗ B(R) = B(R3).

Example (Finite coin tosses)

Consider for everyN ∈ N the sample space Ω = {0, 1}N =
{

(ω0, ω1, ω2, . . . , ωN ), ωi ∈ {0, 1}
}
.

We choose the σ-algebra F =
(
P({0, 1})

)N and we consider the product probability given
by P =

⊗N
i=1 Unif{0,1}, which corresponds to a fair coin toss.

Remark Note that if the sequences were infinite, then F =
(
P({0, 1})

)N would not be
a σ-algebra anymore, since this power set is uncountable and isomorphic to the power set
of [0, 1], P([0, 1]). Therefore, one needs to consider a Lebesgue-like measure for infinite
sequences.

As an example of a stochastic process, we could for instance define the following random
variables,

Xn :=

1 if wn = 0

−1 if wn = 1

and we have that the sequence X = (Xn)n∈{1,...,N} is a stochastic process on (Ω,F ,P).

If we define now Yn(ω) :=
∑n
i=1Xi(ω), this is again a random variable and thus the

sequence Y = (Yn)n∈{1,...,N} is again a stochastic process. Whereas Xn only depends on
the n-th component of the outcome ω, Yn depends instead on the events (ω1, . . . , ωn) up to
time n.

On the other hand, if we define now Zn :=
∑N
i=nXi, then Z = (Zn)n∈N is a stochastic

process that depends on (ωn, ωn+1, . . . , ωN ), which are the events from time n to time N .
This means that at time n, Zn cannot be observed.

5.1 Filtrations

In the above stochastic model, there is a clear understanding of the type of events that we can
observe at time n:

44

https://en.wikipedia.org/wiki/%CE%A3-algebra#Product_.CF.83-algebra
https://math.stackexchange.com/questions/1457569/question-about-the-sigma-algebra-for-infinite-coin-toss
https://math.stackexchange.com/questions/1457569/question-about-the-sigma-algebra-for-infinite-coin-toss


5.1 Filtrations Lecture 5: Introduction to stochastic processes

› Can we observe the event {
N︷ ︸︸ ︷

(1, 1, . . . , 1)}? Not at time n < N .

› However, at time n we can observe {Yn = 5}, since Y depends only on ωi for i ≤ n.

In this case, if we define the following σ-algebra,

Fn := {events observable up to time n},

then we conclude that the stochastic process Z is clearly different from both X and Y , in that

› Xn, Yn are Fn-measurable.

› Zn is not Fn-measurable.

We formalize this fundamental concept by the following definition, which serves as a basis for deter-
mining the measurability of a stochastic process.

Def. (Filtration)

Let (Ω,F ,P) be a probability space, we say that a family (Fn)n∈I of σ-algebras is a filtration
if (Fn)n∈I is such that

Fn ⊂ Fn′ ⊂ F for all n < n′.

Remark Fn is an increasing family of σ-algebras, i.e. Fn ↗, and this is useful to keep track of
the evolution of information given by all the events which have been observed at time n.

Example (Previous)

In the previous example, {X2 = 1} ∈ F2 but also {X1 = 1} ∈ F2.

Def. (Adaptability)

A stochastic process X = (Xn)n∈I is adapted w.r. to a filtration (Fn)n∈I if Xn is a Fn-
measurable function for any n ∈ I.

Example (Previous)

In the previous example, we have that the stochastic processes

› X and Y are adapted to (Fn)n∈I .

› Z is not adapted to (Fn)n∈I .

We now take another approach to the description of stochastic processes: we start by observing the
values of the stochastic process and wonder which events are observable based on them.
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Example (Finite dice rolls)

Let’s consider a sample space Ω = {1, . . . , 6}N =
{

(ω1, . . . , ωN ), ωi ∈ {1, . . . , 6}
}
, for N ∈ N.

Take again F = P(Ω) and the product probability P.

Let’s consider the stochastic process

Xn(ω) =

1 if ωn is odd

−1 if ωn is even

We now set Fn := {all set observable by observing the first n rolls}, from which Xn is
clearly Fn-measurable and X is adapted.

Another point of view Assume now that we can observe the random variables Xn but
not the outcome of the experiment ω, i.e. we cannot observe Fn.

The question now becomes: Which events are observable once we observe Xn? The set of
events that we can observe by observing Xn turns out to be a filtration (no proof) and is
the minimal class of events (FXn )n∈I that make the process X adapted to it.

Def. (Natural filtration)

Given X stochastic process on a probability space (Ω,F ,P), we call the natural filtration
of X the family (FXn )n∈I given by

FXn := σ
(
X−1
i (A) : i ≤ n,A ∈ F

)
Remark FXn is the smallest filtration that makes the process X adapted and contains only the
information related to the process itself.

5.2 Distribution of a stochastic process

We now turn to uniqueness of the stochastic processes, for which we have two versions (similar to
random variables):

– Strong uniqueness (almost-sure equality)

– Weak uniqueness (equality in distribution)

Example (Why d
= is a tricky notion)

Consider X ∼ N0,1 and −X ∼ N0,1, then X
d
= −X but X

a.s.
6= −X.
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Def. (Indistinguishable stochastic processes)

Let X,Y be stochastic processes. We say that X and Y are indistinguishable, and we
denote it by X a.s.

= Y , if

P(X = Y ) = P
(
{ω ∈ Ω : Xn(ω) = Yn(ω) ∀n}

)
= 1.

Now, to give an appropriate definition of d
= for stochastic processes, we need to define what is the law

of a stochastic process, which is something that becomes very technical. We instead use a shortcut
which can be proven to be equivalent to the more technical construction.

Def. (Equality in distribution)

Let X,Y be stochastic processes, we say that X and Y are equal in law (or in distribu-
tion), X d

= Y , if the marginal distribution of any finite collection of variables are equal, i.e.
if for any finite choice of indices n1, n2, . . . , nk ∈ I,

µ(Xn1 ,Xn2 ,...,Xnk ) = µ(Yn1 ,Yn2 ,...,Ynk ),

which is equivalent to saying that for any such choice of indices,

(Xn1
, . . . , Xnk)

d
= (Yn1

, . . . , Ynk).

Remark Requiring the processes to have the same law only at each time t is a very weak condition
which is not enough to be a good definition of d

=. Indeed, Xn ∼ Yn for all n���=⇒ X
d
= Y as we

would intuitively mean it.

Example (Same marginal at each n but different law)

Let Xn ∼ 1
2δ−1 + 1

2δ1 = Unif{−1,1} for any n be a stochastic process that represents a
balanced coin toss. Define now another stochastic process by

X ′n := X1 ∀n,

then we have that for any n, Xn ∼ X1 ∼ X ′n. However, when seen as a whole process
the two laws are completely different: if we consider the event of heads followed by tails,
H := {(1,−1)}, then since X ′n = X1 for all n it follows that

µ(X1,X2)(H) = P(X1 = 1, X2 = −1) =
1

4
,

µ(X′1,X
′
2)(H) = P(X1 = 1, X1 = −1) = 0.

At each time the marginal distribution is the same, but if seen as a whole trajectory then
the laws of the two stochastic processes are completely different.
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Lecture 6: Martingales and Markov processes
2021-11-18

We introduce two important classes of stochastic processes which can be extended to the continuous
time case.

6.1 Martingales

References Bass (2011, §3)

Martingales were well-known stochastic processes in economics which over the last decades became
crucial in the theory of stochastic integration, from which we can construct continuous Markov
processes (diffusions).

Def. (Discrete-time martingale)

A discrete stochastic process X = (Xn)n is called a martingale w.r. to a given filtration
(Fn)n if

i. Xn ∈ L1(Ω,P) for all n.

ii. E[XN |Fn] = Xn for all n ≤ N .

Adaptability There is no need to specify thatX has to be adapted to (Fn)n, sinceXn = E[XN |Fn]

implies measurability w.r. to Fn.

Expected value The second equality is a very strong property which tells us that if we condition
the future process on the information at time n, then the expected value is equal to the value that
we have observed. Using the tower property, we have that E[XN ] = E[E[XN |Fn]] = E[Xn], therefore
the expectation is a priori constant in time.

Example (Just E(X) = µ is not enough)

Let (Xn)n be a family of independent random variables with E[Xn] = µ for all n, and
consider the natural filtration (FXn )n. The process X = (Xn)n is not a martingale for all
possible distributions of Xn, since

E[XN |FXn ]
⊥⊥
= E[XN ] = µ.

Therefore, this process is a martingale ⇐⇒ E[XN ] = µ = Xn for all n ≤ N , which is
satisfied ⇐⇒ Xn ≡ µ almost surely.

Remark From the example above, independence is orthogonal to martingality, unless we choose
a degenerate distribution Xn ≡ µ.

Example (Martingale from independent variables)

Let us consider the process defined in the previous example, and define the stochastic process
Yn =

∑n
k=1Xk. Clearly, Yn+1 and Yn are marginally not independent, therefore the process
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could be a martingale. Indeed, we have that

E[Yn+1|FXn ] = E[Yn +Xn+1|FXn ] = E[Yn|FXn ]︸ ︷︷ ︸
=Yn

+E[Xn+1|FXn ]︸ ︷︷ ︸
=E[Xn+1]

= Yn + µ.

Therefore, we have that Yn is a martingale ⇐⇒ µ = 0.

What can we say now about a martingale which is not defined w.r. to the filtration FXn but to
a different filtration? For instance, what happens to the martingale property when enlarging to a
bigger filtration?

Example (Adding events breaks martingality)

Let X = (Xn)n be a martingale w.r. to a filtration (Fn)n, and consider now a new filtration
equal to all possible events F at all times, (Gn)n = F . We now have that X is a martingale
w.r. to Gn if

Xn = E[XN |Gn] = E[XN |F ] = XN ,

therefore this means that X can again only be a constant process Xn = µ for all n.

In general When adding events we can’t immediately conclude that the process is still a
martingale.

Prop. 3 (Removing events does not break martingality)

Let (Xn)n be a martingale w.r. to a filtration (Fn)n. Let now (Gn)n be another filtration such
that

a) X is adapted to (Gn)n.

b) Gn ⊂ Fn is a sub-filtration at all times.

Then, X is a martingale w.r. to (Gn)n.

Proof.
We use the tower property to prove the result, indeed since Gn ⊂ Fn we can write

E[XN |Gn]
(b)
= E[

=Xn︷ ︸︸ ︷
E[XN |Fn] |Gn]

(a)
= Xn

Corollary 5

If X is a martingale w.r. to any given filtration (Fn)n, then X is also a martingale w.r. to
the natural filtration (FXn )n.
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Proof.
Since σ(Xn) ⊆ FXn we can apply the tower property in order to show that

E[XN |Xn] = E[E[XN |FXn ]|Xn]
(a)
= E[Xn|Xn] = Xn.

To sum up, the above properties show that if X is a martingale then for all N ≥ n we have that
E[XN |Xn] = Xn.

Finally, we introduce two broader classes of stochastic processes whose intersection gives exactly the
set of martingale processes.

Def. (Submartingale and supermartingale)

A process X = (Xn)n is called a submartingale (supermartingale) w.r. to a given filtra-
tion (Fn)n if

i. Xn ∈ L1(Ω,P) for all n.

ii. X is adapted to (Fn)n

iii. Xn

(≥)

≤ E[XN |Fn].

Expected value It’s straightforward to check that, for a supermartingale (submartingale), the
expected value is always increasing (decreasing), since

E[XN ] = E[E[XN |Fn]]
a.s.
≥

(≤)
E[Xn].

6.2 Stopping times

We now introduce a class of events which is extremely relevant to the analysis of stochastic process.
Broadly speaking, this class of events is comprised by all events such that at time n we can tell
whether they have occurred or not.

Def. (Stopping time)

Let (Fn)n be a filtration. We say that a random variable τ : Ω −→ [0,+∞] is a stopping
time if the event {τ ≤ n} is such that

{τ ≤ n} ∈ Fn for all n.

Observability This is an observability condition for the random variable τ , i.e. at time n we must
be able to tell whether the above event occurred or not based on the available information Fn.
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Remark Let τ be a stopping time and consider the event {τ > n}. Then, the following events are
also observable

{τ > n} = {τ ≤ n}c ∈ Fn

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}︸ ︷︷ ︸
∈Fn−1⊂Fn

∈ Fn.

Example (Exit – or hitting – time)

Let X be a discrete-time stochastic process and consider a Borel set H. Let now IH be the
set of times at which X exits from H, i.e.

IH := {n : Xn 6∈ H}.

Let now τ be the random variable that describes the time of first exit,

τ :=

inf IH if In 6= ∅
+∞ if IH = ∅

Figure 10: Example of a hitting time for a given set H.

This random variable is as a stopping time, since the event {τ ≤ n} can be written as

{τ ≤ n} =
⋃
i≤n

{Xi 6∈ H}︸ ︷︷ ︸
Fi⊂Fn

∈ Fn.

Continuous-time The previous example shows why this definition of a stopping time becomes
problematic for continuous-time stochastic processes, due to the fact that a countable union of events
is not guaranteed to belong to the σ-algebra Fn.
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6.3 Markov processes

Def. (Markov property)

A discrete-time stochastic process X = (Xn)n defined on a filtered probability space
(Ω,F , (Fn)n,P) has the Markov property if it is adapted and the following property holds
true for any n:

E[ϕ(Xn+1)|Fn] = E[ϕ(Xn+1)|Xn], (M)

for any ϕ B-measurable and bounded.

Interpretation Expectation of future values conditional to all cumulated information is equal to
the expectation given the value of the process at time n.

Regression function If X has the Markov property, then we can find a function gn such that

E[ϕ(Xn+1)|Fn] = gn(Xn),

where gn(x) = E[ϕ(Xn+1)|Xn = x] is the regression function (see Doob’s Lemma 4).

In practice Assume now that E[ϕ(Xn+1)|Fn] = fn(Xn) is a deterministic function of Xn, then
by the tower property of E we can write

E[ϕ(Xn+1)|Xn] = E[E[ϕ(Xn+1)|Fn]|Xn] = E[fn(Xn)|Xn] = fn(Xn).

Therefore, if we can find that the expectation of Xn+1 is a deterministic function of Xn, we can
conclude that X has the Markov property.

Example (Independent r.v.’s form a Markov proces)

Let X = (Xn)n be a sequence of independent r.v.’s, then Fn = FXn and

E[ϕ(Xn+1)|FXn ]
⊥
= E[ϕ(Xn+1)].

Lemma 5 (Freezing)

If X,Y are random variables and G a σ-algebra such that Y and G are independent and X
is G-measurable, then we have that

E[f(X,Y )|G] = E[f(x, Y )]
∣∣∣
x=X

Proof.
No.
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Interpretation Since Y is independent of the information, the randomness in X goes out of the
conditioning operation.

Example (Cumulative sum is a Markov process)

Consider now the stochastic process Yn :=
∑n
i=1Xi for the process X defined in the previous

example. Then, we have that

E[ϕ(Yn+1)|FXn ]
def
= E[ϕ(Yn +Xn+1)|FXn ]

= E[ϕ(y +Xn+1)]
∣∣
y=Yn

(Freezing Lemma 5),

which is a deterministic function of Xn+1 and therefore makes Y a Markov process.

Prop. 4 (Characterization of Markov’s property)

The Markov property (M) for a process X is equivalent to satisfying, for any A ∈ B,

E[1Xn+1∈A|Fn]︸ ︷︷ ︸
P(Xn+1∈A|Fn)

= E[1Xn+1∈A|Xn]︸ ︷︷ ︸
P(Xn+1∈A|Xn)

(M ′)

Proof.
(M) =⇒ (M ′) : Since 1A is a bounded and B-measurable function, it is valid by choosing ϕ = 1A.

(M ′) =⇒ (M) : Let (ϕk)k be a sequence of simple functions of the type ϕk =
∑m
j=1 cj,k1Aj,k , which

are bounded and B-measurable, and such that

ϕk
k→∞−−−−→ ϕ.

See for instance here for the standard construction of such a sequence of simple functions (ϕk)k

when approximating a bounded function ϕ. With this approximation, we can chain the following
equations:

E[ϕ(Xn+1)|Fn]
DCT
= lim

k→∞
E[ϕk(Xn+1)|Fn]

= lim
k→∞

m∑
j=1

cj,kE[1Aj,k(Xn+1)|Fn]

= lim
k→∞

m∑
j=1

cj,kP(Xm+1 ∈ Aj,k|Fn)

= lim
k→∞

m∑
j=1

cj,kP(Xm+1 ∈ Aj,k|Xn) (M ′)

= (Do the steps backwards)

= E[ϕ(Xn+1)|Xn].
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Example (Enlarging the filtration breaks Markov)

Let Gn = F be the maximal filtration for all n ∈ N, then for a discrete Markov process X
we have

E[Xn+1|Gn] = E[Xn+1|F ] = Xn+1 6= E[ϕ(Xn+1)|Xn].

On the other hand, when we reduce the filtration we have a preservation result analogous to what
we have seen with martingales (Prop. 3).

Prop. 5 (Reducing the filtration preserves Markov)

If X has (M) and (Gn)n is a filtration such that

a) X is adapted to (Gn)n

b) Gn ⊂ Fn,

then X has (M) w.r. to (Gn)n.

Proof.
Similarly to Prop. 3, use the tower property of the conditional expected value.

Prop. 6 (Equivalent definition of Markov’s property)

Property (M) for a process X is equivalent to satisfying, for each N > n,

P(XN ∈ A|Fn) = P(XN ∈ A|Xn) (M ′′)

Proof.
Homework.

Validity All the properties we have discussed until now are expressed in their general form and
are valid for any type of discrete-time stochastic process, i.e. whether each random variable Xn is
characterized either by a continuous or discrete distribution. What we discuss below is a special-
ization of the properties in the case when X is a discrete-time process for which Xn takes discrete
values.

6.4 Markov chains

References Brémaud (2020)

Def. (Discrete-time process)

A discrete-time process X is called a discrete process if Xn takes values on a countable
state space E.
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Example Some examples are E = N,N2,Z,Z2, . . .

Notation Following the notation of Brémaud (2020), we use i, j, k, h, l and i0, i1, in, . . . to denote
the elements of the countable space E.

Def. (Markov chain)

A discrete process X is called a Markov chain if it has the Markov property w.r. to the
natural filtration (FXn )n.

Prop. 7 (Equivalent definition of Markov chain for discrete processes)

A discrete process X is a Markov chain if and only if for any n and for any i0, i1, . . . , in, j ∈ E

P(Xn+1 = j|Xn = in, . . . , X0 = i0) = P(Xn+1 = j|Xn = in), (∗)

whenever this probability is valid, i.e. P(Xn = in, Xn−1 = in−1, . . . , X0 = i0) > 0.

Proof.
No.

Problem This definition works only for processes which are in discrete time and are defined on
a countable state space. The more general definition (M) can be used instead for discrete-time
continuous processes.

Def. (Homogeneous Markov chain)

We call a Markov chain X homogeneous (HMC) if the right-hand side of (∗) does not
depend on n, i.e. if

P(Xn+1 = j|Xn = in, . . . , X0 = i0) = P(X1 = j|X0 = in).

Example (HMC)

If X is a HMC then, for example

P(X3 = 4|X2 = 1, X1 = 0, X0 = −1)
(∗)
= P(X3 = 4|X2 = 1)

HMC
= P(X1 = 4|X0 = 1).

A HMC is particularly important since we can define a transition matrix that describes the transition
from one state to another regardless of the time.

Def. (Transition matrix of a HMC)

For a HMC X we define the transition matrix as the countable family of numbers

P = (pij)i,j∈E , pij = P(X1 = j|X0 = i).
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Properties of P For any i ∈ E, every row of P is a probability distribution and therefore P is a
stochastic matrix, i.e. ∑

j∈E
pij = 1 for all i ∈ E.

Consider now the process of making two Markov chain transitions. In this case we have to use P two
times in order to transition from X0 → X1 and then from X1 → X2. To compute these probabilities,
we introduce a generalization of the matrix multiplication and addition operations in order to define
the powers of an infinite-dimensional matrix P 2, P 3, etc . . .

Algebraic operations Let A = (aij)i,j∈E and B = (bij)i,j∈E be two transition matrices, then we
generalize the usual sum and product operations for standard matrices as

A+B = (aij + bij)i,j∈E

A ·B =
(∑
k∈E

aikbik

)
i,j∈E

Let now x = (xi)i∈E be a column vector, then

Ax =
(∑
k∈E

Aikxk

)
i∈E

x>A =
(∑
k∈E

xkAki

)
i∈E

Example (1D random walk)

Consider a r.v. X0 with values in E = Z. Let now (Zn)n∈N be i.i.d r.v.’s such that

Zn ∼ pδ1 + (1− p)δ−1, p ∈ (0, 1).

We set Xn+1 = Xn+Zn+1 and we consider the stochastic process X = (Xn)n∈N. We already
know that X is a HMC, and this stochastic process increases by 1 with probability p and
decreases by 1 with probability 1− p. Therefore, its transition matrix is given by

pij =


p if j = i+ 1

1− p if j = i− 1

0 otherwise

Exercises

1. Proof of the proposition

2. (Brémaud, 2020, p. 88) ex. 2.1.1 - 2.1.6, 2.2.1
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Lecture 7: Homogeneous Markov chains
2021-11-25

Homogeneous Markov chains are the basis upon which more complicated Markov chains are studied.
Their properties will be studied in detail in the following lectures, starting from the basic quantities
of interest.

7.1 Initial distribution

The distribution of a homogeneous Markov chain X only depends on

1. The initial law π0, π0({i}) = P(X0 = i) for all i ∈ E.

2. The transition matrix P .

More precisely, for i0, i1, . . . , in ∈ E we have that the probability of the path from i0 through
i1, . . . , in is equal to

P(X0 = i0, . . . , Xn = in) = π0(i0) · pi0i1 · . . . · pin−1in .

n steps ahead Now we need to compute the conditional probability of transition for multiple
time steps, P(Xn = in|X0 = i0). We consider the probability distribution at time n,

πn(j) = P(Xn = j)

=
∑
i∈E

P(Xn = j,Xn−1 = i)

=
∑
i∈E

pijP(Xn−1 = i)

=
∑
i∈E

πn−1(i) · pij

= (πn−1P )j (π row vector)

Therefore, πn = πn−1 · P and if we repeat this process n times we obtain the following equation

πn = π0P
n

Notation We denote by Pnij the element (i, j) of Pn.

Example

Let E = {1, 2, 3, 4} and consider the initial distribution π0({j}) = 1
4 with the transition

graph in Figure 11.
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1

1

1

1

1
2

1
2

1

1

Figure 11: transitionGraph

For the above graph, P(X3 = j|X2 = 2) is not defined, whereas P(X2 = j|X1 = 2) is
well-defined.

Future paths With Markov chains we can consider two general events,

future A = (Xn+1 = j1) ∩ . . . ∩ (Xn+k = jk)

past B = (Xn−1 = jn−1) ∩ . . . ∩ (X0 = j0)

From the Markov property (M) we can prove (long and boring proof) that

(M) ⇐⇒ P(A|Xn = in, B) = P(A|Xn = in). (3)

This is a bit stronger than the single value at time n + 1, since we consider the whole trajectory
from time n+ 1 to n+ k.

Conditional independence In (3) we can multiply by P(B|Xn = in) to get

P(A|Xn = in, B)
P(B ∩ {Xn = in})
P({Xn = in})

=
P(A ∩B ∩ {Xn = in})

((((
((((

(
P({Xn = in} ∩B)

((((
((((

(
P(B ∩ {Xn = in})
P({Xn = in})

therefore

P(A ∩B|Xn = in) = P(A|Xn = in)P(B|Xn = in)

From this we conclude that A ⊥⊥ B conditional to Xn = in.

7.2 Canonical construction
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Theorem 26 (Canonical representation)

Let (Zn)n be a sequence of i.i.d r.v.’s with values on a measurable space (G,G). Let
f : E × G −→ E be a measurable function w.r. to the product σ-algebra P(E) ⊗ G and
X0 ⊥⊥ (Zn)n be an initial r.v. with values on E. Then, if we define

Xn+1 := f(Xn, Zn+1), for all n ∈ N0,

we have that the process X = (Xn)n∈N0 is a homogeneous Markov chain with transition
matrix

Pij = P
(
f(i, Z1) = j

)
.

Non-i.i.d If the Zn are not identically distributed, then we would have a non-homogeneous Markov
chain with transition matrix Pij(n) = P

(
f(i, Zn) = j

)
White noise The above representation is also called a Markov chain driven by white noise, since
the sequence of (Zn)n is of i.i.d random variables.

Proof.
We will prove this under the general Markov property (M). For a set A ⊂ E we can write

P(Xn+1 ∈ A|FXn )
def
= E(1Xn+1∈A|FXn ) = E[1A(Xn+1)|FXn ].

With this notation we can use the definition of Xn+1 in the theorem and since Zn+1 is independent
of FXn = σ(X1, . . . , Xn) = σ(Z1, . . . , Zn) we can write

E[1A(Xn+1)|FXn ] = E[1A
(
f(Xn, Zn+1)

)
|FXn ]

= E[1A
(
f(i, Zn+1)

)
]
∣∣∣
i=Xn

(freezing lemma 5)

= E[1A
(
f(i, Z1)

)
]
∣∣∣
i=Xn

(Zn are i.i.d)

and since this is a deterministic function of Xn, we have the Markov property. Moreover, if we choose
A = {i} we have the transition probability

Pij = P
(
f(i, Z1) = j

)
.

Example (Random walk)

Setting G = {−1, 1} and f(i, z) = i+ z yields the 1D random walk

Xn+1 = Xn + Zn+1, Z = pδ1 + (1− p)δ−1.
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7.2.1 Reverse problem

The problem we now consider is the following: given π0 and P = (Pij)i,j∈E transition matrix, we
want to find a process X = (Xn)n such that

1. X is a HMC.

2. X0 = π0.

3. P is the transition matrix of X.

To do so, we generate a categorical variable with probabilities Pi = (pi1, . . . , piE) and we transition
from i to j if the categorical variable indicates the set j. In order to write the process for checking
theorem 26 we define the following objects:

› (Zn)n i.i.d with Zn ∼ Unif[0,1].

› f : E × [0, 1] −→ E defined as
f(i, z) =

∑
j∈E

j · 1Aij (z),

where Aij :=
[∑j−1

k=0 Pik,
∑j
k=0 Pik

]
We obtain the canonical construction by defining

Xn+1 := f(Xn, Zn+1),

which is a homogeneous Markov chain by theorem 26 with transition matrix P as required, since

P
(
f(i, Z1) = j

)
= P(Z1 ∈ Aij) = Pij .

Now, is the canonical representation unique or do we have situations like X ∼ N (0, 1) and −X d
= X?

It turns out that the canonical representation is not unique, and it can be seen via the following
counterexample.

Example (Urn of Ehrenfest)

We have urns A and B

A B

Figure 12: Urn of Ehrenfest with N = 9 total balls.
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We have N total balls and everytime we choose a ball its urn is changed, therefore we can
write this process

Xn+1 = Xn + Zn+1︸ ︷︷ ︸
∈{−1,1}

.

We observe that although the functional relationship is the same, the process is different
from the random walk, since Zn+1 and Xn are not independent,

P(Zn+1 = 1|Xn = i) =
N − i
N

.

The point is that this process cannot be written as a canonical representation, however it’s
possible to write another process with the same law using the canonical representation.

Example (Gambler’s ruin)

We consider a 1D random walk X = (Xn)n∈N0
lower bound c ∈ N0 and with an initial value

X0 ≡ a. At each time we can either win or lose, and Xn is the cumulated gain at time n.
Consider also the stopping time

τ =

inf
{
n : Xn ∈ {0, c}

}
+∞ if Xn 6∈ {0, c} for all n

We want to compute

1. P(τ <∞, Xτ = c︸ ︷︷ ︸
F :=winning game

|X0 = a).

2. E[τ |X0 = a].

Problem 1 – We set u(i) = P(F |X0 = i) for all i = 0, . . . , c. We have some boundary
conditions on u, since u(0) = 0

u(c) = 1
.

Remark One can prove that, since by the Markov property (M) the future trajectory
depends only on the present value, then

P(F |X0 = i) = u(i) = P(F |Xn = i),

Therefore
P(F |X0 = i) =

∑
j∈E

P(F,X1 = j|X0 = i)

=
∑
j∈E

P(F |X1 = j)P(X1 = j|X0 = i)

=
∑
j∈E

u(j)Pij
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7.3 Stationarity Lecture 7: Homogeneous Markov chains

In the case of the random walk we therefore have that Pij is 6= 0 only for j = i − 1 and
j = i+ 1, and we get the following recursion for i = 1, . . . , c− 1

u(0) = 0

u(i) = u(i+ 1)p+ u(i− 1)(1− p)
u(c) = 1.

We can compute this solution as

u(i) =


1−( 1−p

p )
i

1−( 1−p
p )

c if p 6= 1
2

i
c if p = 2

Remark Define now F c := losing the game, then since p = 1
2 the game is symmetric and

P(F c|X0 = i) =
c− i
c

.

Moreover, this shows that

P(τ <∞|X0 = i) = P(F |X0 = i) + P(F c|X0 = i) =
i

c
+
c− i
c

= 1.

Problem 2 – For a specific initial wealth i, we can apply the same one-step analysis we
did before, this time in terms of expected values: set m(i) := E[τ |X0 = i]

Remark From the Markov property (M) we can show that E[τ |X1 = i] = m(i) + 1.
We partition w.r. to the only two events that can occur, which are

m(i) = E[τ · 1{X1=i−1}|X0 = i] + E[τ · 1{X1=i+1}|X0 = i]

= E[τ |X1 = i+ 1] · P(X1 = i+ 1|X0 = i) + E[τ |X1 = i− 1] · P(X1 = i− 1|X0 = i)

=
(
m(i+ 1) + 1

)
p+

(
m(i− 1) + 1

)
(1− p)

= p ·m(i+ 1) + (1− p) ·m(i− 1) + 1.

This goes together with the two boundary conditions
m(0) = 0

m(i) = p ·m(i+ 1) + (1− p) ·m(i− 1) + 1

m(c) = 0

Solving for p = 1
2 we obtain m(i) = i(c− i).

In general, for computing probabilities and expected values of absorbing states we can apply this
type of first-step analysis.
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7.3 Stationarity

We want to characterize the property of stationarity for a stochastic process, that is, Markov chains
whose distribution does not change over time.

Def. (Stationary distribution)

We say that a probability distribution π = (π1, π2, . . . , π|E|)
> on E is stationary if

π> = π> · P.

Remark A distribution is not universally stationary, but w.r. to a chosen transition matrix P .

Remark If π is stationary, then π> = π>Pn for any n ∈ N.

Def. (Stationary Markov chain)

A HMC is called stationary if

P(Xn = i0, Xn+1 = in+1 . . . , Xn+k = ik) = P(X0 = i0, X1 = i1, . . . , Xk = ik),

for any choice of n ∈ N0, k ∈ N and i0, . . . , ik ∈ E.

Prop. 8 (Stationarity of the HMC)

An HMC is stationary ⇐⇒ the initial distribution π0 is stationary.

Proof.
=⇒ : Simple to prove.
⇐= : We start by computing

P(Xn = i0, . . . , Xn+k = ik) = P(Xn = i0) · pi0i1 · . . . · pik−1ik

= π>0 · Pn · pi0i1 · . . . · pik−1ik

= π>0 · pi0i1 · . . . · pik−1ik (stationary)

= P(X0 = i0, X1 = i1, . . . , Xk = ik).
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Lecture 8: Global balance equation
2021-11-26

A useful tool in the analysis of homogeneous Markov chains is the global balance equation. The
equation stems from the definition of stationary distribution,

π>P = π> ⇐⇒ π(i) =
∑
j∈E

π(j)Pji, for all i ∈ E.

Example

Let E = {1, 2} and P =
(

1−α α
β 1−β

)
for α, β ∈ (0, 1), therefore we can write the global

balance equations: π(1) = π(1)(1− α) + π(2)β

π(2) = π(1)α+ π(2)(1− β)
(4)

which can be solved as a linear system in order to find the solution in π(1), π(2).

0 = π>(P − I) = π>
(−α α
β −β

)︸ ︷︷ ︸
det=0

, since the determinant is null all the solutions to (4) are found by solving the first equation,
constrained to the fact that π is a probability distribution,0 = −απ(1) + βπ(2) (global balance)

π(1) = 1− π(2) (probability distribution)~w�π(1) = β
απ(2) = β

α+β

π(2) = 1
1+ β

α

= α
α+β

Example (Urn of Ehrenfest (cont.))

We recall that for the urn of Ehrenfest we have

Pij =


i
N if j = i− 1

N−i
N if j = i+ 1

0 otherwise

,

therefore the global balance equation can be computed as
π(0) = π(1) · 1

N

π(N) = π(N − 1) · 1
N

π(i) = π(i− 1) · N−i+1
N + π(i+ 1) · i+1

N i = 1, . . . , N − 1
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We claim that π(i) = π0 ·
(
N
i+1

)
for any i = 0, . . . , N. From the first equation, we have

i = 1 : π(1) = π(0) ·N

i 6= 1 : By induction, assuming we isolate π(i+ 1) as

π(i+ 1) =
N

i+ 1

(
π(i)− π(i− 1) · N − i+ 1

N

)
induct.

=
N

i+ 1

(
π(0)

(
N

i

)
− π(0)

(
N

i− 1

)
N − i+ 1

N

)

= π(0) ·N !

(
N

(i+ 1)i!(N − i)!
− N − i+ 1

(i+ 1)(i− 1)!(N − i+ 1)!︸ ︷︷ ︸
= 1

(i+1)(i+1)!(N−i)!

)
(collect π(0), N !)

= π(0) ·N ! ·
(

N − i
(i+ 1)!(N − i)!

)

= π(0) ·N ! ·
(

1

(i+ 1)!(N − i+ 1)!

)

= π(0) ·
(

N

i+ 1

)
Now, the only unknown is π(0), which we get by the constraint that π is a distribution,
therefore

N∑
i=0

π(i) = 1 ⇐⇒ π(0) ·
N∑
i=0

(
N

i

)
= 1

⇐⇒ π(0) · 2N = 1 (binomial theorem)

⇐⇒ π(0) =
1

2N
.

Therefore, π(i) =
(
N
i

)
2−N =

(
N
i

)
1
2i

1
2N−i

for i = 0, . . . , N , therefore π = Bin(N, 1
2 ).

Example (1-D random walk)

Consider X a 1-D random walk with p = 1
2 , with transition matrix

P =

(
− − 0 1

2 0 1
2 0 − − −

− − 0 0 1
2 0 1

2 0 − −

)

then, using the global balance equation we have

π(i) =
1

2
π(i− 1) +

1

2
π(i+ 1), for all i ∈ Z.
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By induction,
π(i) = π(0) + i

(
π(i)− π(0)

)
for all i ≥ 2

A stationary distribution would imply π(i) = π(0) for any i ≥ 0, but since we have infinite
values of i even having the condition

π(i) = π(0) =⇒
∞∑
i=0

π(0) =∞.

Remark In general there might exist many stationary distributions for a given matrix P .

Example (Multiple stationary distributions)

We just have to find a distribution such that

π> = π>P,

therefore if P = I this equation is satisfied for any initial distribution π.

8.1 Strong Markov property

Let τ be a stopping time w.r. to (FXn )n, then {τ = n} ∈ FXn = σ(X0, X1, . . . , Xn). However, by
Doob’s theorem the random variable 1{τ=n} can be written as a function of X0, . . . , Xn,

1{τ=n} = ψ(X0, X1, . . . , Xn).

Example (Return time)

Define

Ti :=

min{n ∈ N : Xn = i} if 6= ∅
+∞ if Xn 6= i for all n ∈ N

This is different from the hitting time, since in that case we had

τi :=

min{n ∈ N0 : Xn = i} if 6= ∅
+∞ if Xn 6= i for all n ∈ N

The problem is that for X0 = i ���=⇒ T <∞.

Example (Successive returns)

Fix i ∈ E and let

τ
(i)
1 := Ti,

τ
(i)
n+1 :=

min{m > τ
(i)
n : Xm = i} if 6= ∅

+∞ if Xm 6= i for all m > τ
(i)
n
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We observe that the event

{τ (i)
k = m} = {Xm = i}︸ ︷︷ ︸

∈FXm

∩
{ m∑
n=1

1{Xn=i} = k
}

︸ ︷︷ ︸
∈FXm

.

Prop. 9 (Stopping times)

If τ is a stopping time, then for all n ∈ N0 (negatives don’t work),

› τ + n is a stopping time.

› τ ∧ n = min{τ, n} is a stopping time.

Proof.

{τ + n = m} n>0
= {τ = m− n} ∈ Fm

{min{τ, n} = m} = {τ < n}

Let X = (Xn)n be a discrete-time stochastic process and τ a stopping time. We now consider the
stochastic process given by the process observed only when τ occurs, i.e.

Xτ (ω) :=

Xτ(ω)(ω) if τ(ω) <∞
∆ 6∈ E if τ(ω) =∞

We want to investigate the behaviour of

(Xτ+n)n “process X after τ ”

(Xmin{τ,n})n “process X stopped at τ ”

Given the observations in Prop. 9, the above processes remain adapted to the filtration FXn . However,
there is more we can say about the processes which are observed in terms of the stopping times,
which is summarized by the following theorem.

Theorem 27 (Strong Markov property)

Let X be a HMC and τ be a stopping time, then for any i ∈ E we have

a) P(A|Xτ = i, B) = P(A|Xτ = i) for any A future trajectory and B any previous trajec-
tory,

A = {Xτ+1 = j1, . . . , Xτ+k = jk}

B = {X0∧τ = i0, . . . , Xn∧τ = in}

for any n, k ∈ N

b) The process (Xτ+n)n is a HMC with transition matrix P .
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Proof.
No.

8.2 Topology of the transition matrix

We now turn our attention to studying some properties related to the transition matrix P , in
particular accessible states and communicating states.

Def. (Accessible state)

A state j ∈ E is called accessible from the state i ∈ E if there exists M ∈ N0 such that

PMij = P(XM = j|X0 = i) > 0,

and we write i −→ j.

Def. (Communicating states)

Two states i, j communicate if i −→ j and j −→ i, and we write i←→ j.

Prop. 10 (Communication is an equivalence relation)

For two states i, j ∈ E we have that “←→” is an equivalence relation, since

1. i←→ i

2. i←→ j =⇒ j ←→ i

3. i←→ j︸ ︷︷ ︸
PMij >0

and j ←→ k︸ ︷︷ ︸
PM
′

jk >0

=⇒ i←→ k︸ ︷︷ ︸
PM+M′
ik

.

With this relationship we can define an equivalence class E/↔, for which every element i ∈ E

belongs to one and only equivalence class.

Def. (Closedness)

A state i ∈ E is called closed if pii = 1. A set C ⊂ E is called closed if
∑
j∈C pij = 1 for

all i ∈ C.

Exercises

› Example 2.4, 3.2, 5.5, 5.6 one per group as a seminar

› Exercise 2.6.2, 2.7.1, 2.7.2 choose 2 per group, the last group does 2.2.3 and 2.5.3
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Lecture 9: Recurrence of states
2021-12-02

9.1 Recurrence

Notation In the following we will denote the conditional probability and expectation with a sub-
script, i.e.

Pi = P(·|X0 = i), Ei = E[·|X0 = i]

Def. (Recurrence and transience)

Let X be a HMC and i ∈ E, we say that i is recurrent if Pi(Ti <∞) = 1, where Ti is the
event of first return at state i. Otherwise it is called transient.

Def. (Positive recurrence)

If a state i is recurrent and in addition E[Ti] < ∞, then i is called positive recurrent.
Otherwise, it is called null recurrent.

Example (Recurrence conditions)

Let E = N0 and consider a transition graph represented in Figure 13 below. We assume that
pn ∈ (0, 1) for every n, and we want to study whether state 0 is recurrent or not.

Figure 13: Transition graph of the success-runs chain.

Let T0 := “first return time to 0”, then we have that

P(T0 = n) =


n− 1 times different from 0︷ ︸︸ ︷

(1− p0)(1− p1) · . . . · (1− pn−2) pn−1 if n ≥ 2

p0 if n = 1
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9.2 Potential matrix criterion Lecture 9: Recurrence of states

We can write the probability of T0 being finite as the following limit,

P(T0 <∞) = P0(
⋃
n∈N
{T0 = n})

= lim
n→∞

n∑
i=1

P0(T0 = i) (disjoint)

= lim
n→∞

P0(T0 ≤ n)

= lim
n→∞

(
1− P0(T0 > n)

)
= 1− lim

n→∞

n−1∏
i=0

(1− pi) (move right n times)

The above limit is zero
(!)⇐⇒

∞∑
i=0

pi = +∞, which is the condition for recurrence of the state.

9.2 Potential matrix criterion

We will now study two criteria for determining the recurrence of a stochastic process in terms of its
transition matrix P .

Def. (Potential matrix)

We define the potential matrix of a Markov chain with transition matrix P as the matrix

G :=
∑
n∈N0

Pn

Finiteness The entries of the matrix G are not necessarily finite, think for example to the tran-
sition matrix P = I.

Returns to j If we define the random variable Nj :=
∑
n∈N0

1{Xn=j}, i.e. Nj counts the number
of times that the chain returns to j, then

Ei[Nj ] =
∑
n∈N0

Ei[1{Xn=j}] =
∑
n∈N0

Pi(Xn = j) =
∑
n∈N0

Pnij = Gij .

Lemma 6 (Distribution of the return time)

Let Tj := “return time to state j” and fij = Pi(Tj < +∞). Then, we have that the number
of visit Nj to state j is such that

Pi(Nj = r) =

fijfr−1
jj (1− fjj) if r ∈ N

1− fij if r = 0

70



9.2 Potential matrix criterion Lecture 9: Recurrence of states

Interpretation For r = 0, it’s the probability of never returning to j, i.e. Pi(Tj = +∞). For r > 0

we go once from i  j, then j  j happens r − 1 times and then we do not return there anymore
for the rest of the chain.

Proof.

r = 0 Proof is simply {Nj = 0} = {Tj = +∞}.

r > 0 We prove this property by induction, i.e. we assume the statement true for a given r ∈ N. For
r + 1 we have that

Pi(Nj > r) = 1− Pi(Nj ≤ r)

= 1−
r∑

k=0

Pi(Nj = k)

Hp.
= �1− (�1− fij)−

r∑
k=1

fijf
k−1
jj (1− fjj)

= fij − fij(1− fjj)
r∑

k=1

fk−1
jj

= fij − fij���
�(1− fjj)

1− frjj
��

��1− fjj

= fij − fij(1− frjj)

= fij · frjj .

!! Long proof, cannot use the one below because induction assumes the property valid for r
and not for r + 1!!.

Pi(Nj = r + 1) = Pi(Nj > r)− Pi(Nj > r + 1)

= fij · frjj − fijfr+1
jj

= fijf
r
jj(1− fjj)

Theorem 28 (Potential matrix criterion)

The state i ∈ E is recurrent ⇐⇒ Gii = +∞.

Proof.
The proof relies on the previous result (Lemma 6), which characterizes the distribution of the return
time T :

71



9.3 Structure of the transition matrix Lecture 9: Recurrence of states

fjj︷ ︸︸ ︷
Pj(Tj < +∞) = 1 ⇐⇒ Pj(Nj = +∞) = 1.

⇐⇒ Ej [Nj ] = +∞.

Example (1-D random walk is recurrent for p = 1/2)

Consider a 1-D random walk such that Xn = Xn−1 + Zn, with transition probabilities

pij =


p if j = i+ 1

0 if j = i = 1

1− p if j = i− 1

One can show that for odd transitions, P 2n+1
00 = 0, since we cannot go back to state 0 in an

odd number of steps. On the other hand, for even transitions we have

P 2n
00 =

(
2n

n

)
pn(1− p)n =

(2n)!

n!n!
pn(1− p)n.

Using Stirling’s approximation, n! ∼
√

2πn(ne )n, we have

P 2n
00 ∼

(
4 · p(1− p)

)n
√

2πn
, for n� 1.

Hence, the maximum of P 2n
00 as a function of p is attained when

p =
1

2
=⇒

(
4 · p(1− p)

)n
= 1n = 1,

and so we have that P 2n
00

n�1
≈ 1/

√
2πn. Therefore, in order for the process to be recurrent

we must have ∑
n∈N

P 2n
00 = +∞ ⇐⇒ p =

1

2
,

thus if the random walk is symmetric then all states are recurrent. Otherwise, every state is
transient.

9.3 Structure of the transition matrix

A theoretical application of the potential matrix criterion is to the proof that recurrence is a com-
munication class property. Indeed, we have the following remark in terms of communicating states:

Remark Assume j ∈ E is recurrent and accessible from another state i ∈ E. Then,

Gij = Ei[Nj ] =∞.

Proof.
Exercise.
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Theorem 29 (Recurrence of accessible states)

If i←→ j, then i is (positive) recurrent ⇐⇒ j is (positive) recurrent.

Proof.
By definition, i and j communicate if there are M,N > 0 such that pij(M) > 0 and pji(N) > 0.
Consider now the probability of the following transition:

i
M steps−−−−−→ j

n steps−−−−→ j
N steps−−−−−→ i pij(M)pjj(n)pji(N)

i
M + n+N steps−−−−−−−−−−−→ i pii(M + n+N)

Since the first transition is contained in the second,

pii(M + n+N) ≥ pij(M)pjj(n)pji(N) = α · pjj(n).

With the same argument,

pjj(M + n+N) ≥ pji(M)pii(n)pij(N) = β · pii(n).

Therefore, this implies that the series
∑∞
n=0 pii(n) and

∑∞
n=0 pjj(n) either both diverge or both

converge.

Corollary 6 (Recurrent classes)

If a class R ⊂ E is recurrent then it is closed.

Proof.
If i ∈ R goes to j ∈ E, then since i is recurrent the chain must at some point return to i, which
implies PMji > 0 for some M and therefore j ∈ R.

Indeed, observe that we can rearrange in terms of recurrent classes (first) and transient classes (last):

Figure 14: Rearrangement of the communicating classes in terms of their type.
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Def. (Irreducibility)

A HMC X is irreducible ⇐⇒ E is the only communicating class.

Notation For irreducible Markov chains, it makes sense to talk about recurrence of the chain in
place of recurrence of a single state.

Corollary 7 (Irreducibility and recurrence)

If a HMC X is irreducible, then all states i ∈ E will be either recurrent or transient.

Proof.
Follows from theorem 29.

Irreducible Markov chains are special, in the sense that we have another criterion which will tell us
about positive recurrence of the chain.

Theorem 30 (Positive recurrence of an irreducible Markov chain)

An irreducible HMC is positive recurrent ⇐⇒ the HMC admits a stationary distribution π.

Homeworks Each group chooses one example and two exercises.

› Examples 3.2, 3.3, 1.3 pp. 98–108

› Problems 3.1.4, 3.1.6, 3.2.2, 3.3.1, 3.3.3
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Lecture 10: Long-run behaviour
2021-12-09

10.1 Invariant measure of a HMC

Def. (Invariant measure)

Let P be a transition matrix for a HMC X. A sequence (xi)i∈E is called an invariant
measure on E w.r. to P if

1. xi ∈ [0,+∞) for all i ∈ E.

2. x> = x>P , i.e.
xi =

∑
j∈E

xjpji.

Remark We do not require the above sum to be finite, since x can be any type of measure on E.

Theorem 31 (Invariant measure and return times)

Let X be an irreducible recurrent HMC, i0 ∈ E, and Ti0 as the first return time to i0. Set
now x0

i = xi0i := Ei[
∑
n∈N 1{Xn=i} · 1n≤Ti0 ] for all i ∈ E. xi0i is the number of visits at i

prior to time Ti0 , then

a) x0
i > 0 for all i ∈ E

b) x0 = (x0
i )i∈E is an invariant measure.

Remark x0
i0

= 1 by definition of Ti0

Remark∑
i∈E

x0
i =

∑
i∈E

Ei0 [
∑
n∈N

1{Xn=i}1n≤Ti0 ] = Ei0 [
∑
n∈N

∑
i∈E

1Xn=i1n≤Ti0 ] = Ei0 [
∑
n∈N

1n≤Ti0 ] = E[Ti0 ]

This relationship allows us to see a connection between invariant measures and recurrent Markov
chains, in particular when the Markov chain is positive recurrent we have a finite total mass for the
invariant measure.

Theorem 32 (Uniqueness of the invariant measure)

The invariant measure of a recurrent HMC is unique up to a multiplicative constant, fur-
thermore the chain is positive recurrent ⇐⇒

∑
i∈E x

0
i < +∞.

Proof.
See definition of an invariant measure and observe that x> = x>P is preserved via multiplication.
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Theorem 33 (Recurrence and stationary distribution of an irreducible HMC)

An irreducible HMC is positive recurrent ⇐⇒ there exists a stationary distribution π, and
in this case π is unique and componentwise strictly positive.

Proof.
=⇒ : Follows from previous results.

⇐= : Recall that a stationary distribution is such that π(i) =
∑
i∈E π(j)Pnji for all n ∈ N. By

contradiction, assume that the chain X is transient, then

lim
n→∞

Pnji = 0 (potential matrix criterion),

but since the global balance equation holds for every n, it also holds in the limit

π(i) = lim
n→∞

∑
i∈E

π(j)Pnji = 0.

Theorem 34 (Positive recurrence and expected value of return time)

If X is positive recurrent with stationary distribution π, then for any i ∈ E we have

π(i) · Ei[Ti] = 1.

Proof.
We say that

π(i) =
x0
i∑

i∈E x
0
i

Intuitively, a finite number of states such that all of them communicate with each other leads to a
positive probability of returning to each state. Hence, we have the following theorem:

Theorem 35 (Irreducibility of a finite chain)

If E is finite, any irreducible HMC is positive recurrent.

Proof.
Assume that X is transient, then by the potential matrix criterion∑

n∈N
Pnij < +∞,

then since E is finite we have that∑
j∈E

∑
n∈N

Pnij < +∞ =⇒
∑
n∈N

∑
j∈E

Pnij︸ ︷︷ ︸
= 1

=
∑
n∈N

1 = +∞,
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and this is a contradiction.

10.2 Ergodicity

Theorem 36 (Ergodic theorem)

Let X be a positive recurrent HMC and let f : E → R such that f is summable w.r. to the
stationary distribution, i.e.

∑
i∈E
|f(i)| · π(i) < +∞,

(∫
E

|f | dπ <∞
)

then

lim
n→∞

1

n

n∑
k=1

f(xk)
a.s.
=
∑
i∈E

f(i)π(i).

(∫
E

f dπ

)

Proof.
Consider τ1, τ2, . . . , τn, . . . the return times at i0 and set Up :=

∑τp+1

n=τp+1 f(Xn), it can be proved
that (Up)p∈N is a sequence of i.i.d r.v.’s. Using the strong Markov property, we have

E[U1]
s.M.
= Ei0

[ T∑
n=1

f(Xn)
]

= Ei0
[ T∑
n=1

∑
i∈E

f(i) · 1(Xn=i)

]

=
∑
i∈E

f(i)Ei0
[ T∑
n=1

1(Xn=i)

]
=
∑
i∈E

f(i) · πi0i .

Now, using the strong law of large numbers the above equalities yield

lim
n→∞

1

n

n∑
p=1

Up
a.s.
=
∑
i∈E

f(i)πi0i .

By definition, the above quantity
∑n
p=1 Up =

∑τn+1
k=T+1 f(Xk).

Note By definition, if µ(n) := “number of visits to i0 prior to n”, the return time is such that
τµ(n) ≤ n ≤ τµ(n)+1. From this, we can write (since f is positive)∑τµ(n)

k=1 f(Xk)

µ(n)︸ ︷︷ ︸
n→∞−−−−→∑

i∈E f(i)π
i0
i

≤
∑n
k=1 f(Xk)

µ(n)
≤
∑τµ(n)+1

k=1 f(Xk)

µ(n)︸ ︷︷ ︸
n→∞−−−−→∑

i∈E f(i)π
i0
i
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Remark In the statement there is no need to know in advance the value of the stationary distri-
bution. Moreover, this result does not depend on the choice of the initial distribution ν0.

Remark

› Setting f ≡ id yields limn→∞
1
n

∑n
k=1Xk =

∫
E
x dπ.

› Setting f(i) = 1{i0}(i) yields limn→∞
1
n

∑n
k=1 1Xk=i0 = π(i0).

Lemma 7 (Ergodic theorem on the number of visits)

Let X be an irreducible recurrent HMC, and let µ(n) be the number of visits to i0 prior to
time n,

µ(n) :=

n∑
k=1

1Xk=i0 .

Let now f : E → R measurable such that∑
i∈E
|f(i)| · xi0i <∞,

then

lim
n→∞

1

µ(n)

n∑
k=1

f(Xn) =
∑
i∈E

f(i)xi0i

Proof.
Using the ergodic theorem, by the previous lemma we have

lim
n→∞

n

µ(n)
=
∑
i∈E

xi0i ,

but then

lim
n→∞

µ(n)

n
· 1

µ(n)

n∑
k=1

f(xn)

. . .

Corollary 8 (Convergence of a function of multiple states)

Let X be an irreducible positive recurrent HMC and let g : E1+L −→ R with L ∈ N0, such
that ∑

i0,...,iL∈E
|g(i0, . . . , iL)| · π(i0)Pi0i1 . . . PiL−1 iL <∞,

or equivalently Eπ[|g(X0, . . . , XL)|] <∞, then

lim
n→∞

1

N

N∑
k=1

g(Xk, Xk+1, . . . , Xk+L) =
∑

i0,...,iL

g(i0, . . . , iL)π(i0) · Pi0i1 . . . PiL−1 iL .
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Proof.
Consider the process Yn := (Xn, Xn+1, . . . , Xn+L), then it can be proved that Y = (Yn)n is a positive
recurrent HMC with stationary distribution with stationary distribution

π(i0) · Pi0i1 . . . PiL−1 iL ,

and the conclusion follows from the ergodic theorem.
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Lecture 11: Continuous-time stochastic processes
2021-12-10

In the previous lectures we only considered stochastic processes which are defined on both discrete
state spaces and discrete time domains. Now we want to move towards continuous stochastic
processes in both qualities, starting from the easier generalization, which is continuous-time discrete
stochastic processes.

We can think about the easiest type of discrete continuous-time Markov processes, which are se-
quences of step functions where the jumps are performed at a random (countable) sequence of times
T0, T1, . . . , Tn, . . ..

11.1 Continuous-time processes

Def. (Continuous-time stochastic process)

Fix a probability space (Ω,F ,P), then we say that a continuous-time stochastic process
on I ⊂ R is a family (Xt)t∈I of random variables (with values on Rd).

Measurability By definition, Xt is F-measurable for any t ∈ I.

Typical choices Usually, I = R≥0, I = [0, T ], . . .

Equivalent formulation Similarly to the space of sequences of discrete stochastic processes, we
can equivalently define a continuous-time stochastic process as

X : Ω −→ (Rd)I = {functions I → Rd}

ωt→ (t 7→ Xt)

when equipped with a σ-algebra on (Rd)I .

Equivalent formulation II A second equivalent formulation of the continuous-time stochastic
processes is the following function,

X : Ω× I −→ Rd

(ω, t) 7−→ Xt(ω)

with X a (F ⊗ B)-measurable function.

Def. (Natural filtration)

Given X continuous-time stochastic process, we define the natural filtration of X is given
by

FXt := σ(Xs, s ∈ I, s ≤ t)

= σ
(
(Xs ∈ H), H ∈ B, s ∈ I, s ≤ t

)
.
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Def. (Continuous-time martingale)

A continuous-time process X is called a martingale w.r. to a given filtration (Ft)t∈I if

1. Xt ∈ L1(Ω,F ,P) for all t ∈ I

2. E[XT |Ft] = Xt for all T ≥ t

Remark Recall that E[Xt] is constant w.r. to t and E[XT |Xt] = Xt for all T > t.

The first differences between continuous-time and discrete-time stochastic processes lie in the unique-
ness properties of the processes. For discrete-time, we saw two definitions of equality (in law and
almost-sure), and the latter definition changes a bit.

Def. (Modifications)

X,Y continuous time stochastic processes are called modifications if they are equal at all
fixed times,

Xt
a.s.
= Yt for all t ∈ I.

Def. (Indistinguishability)

X,Y continuous time stochastic processes are called indistinguishable if equality holds in
the sense of functions,

Xt
a.s.
= Yt,

i.e. if P(Xt = Yt for all t ∈ I) = 1.

Remark Indistinguishable is stronger than modification. Indeed,

(X = Y ) = (Xt = Yt for all t ∈ I)

=
⋂
t∈I

(Xt = Yt)︸ ︷︷ ︸
Not countable

therefore, if the right hand side have P(·) = 1 does not imply that their intersection has probability
1.

Regularity The equivalence between modifications and indistinguishable can be restored with
some regularity conditions. If X,Y are continuous then we can consider

⋂
t∈I∩Q and take the limit,

in order to get a countable intersection. In this case, X,Y modifications =⇒ X,Y indistinguishable.

Example
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Consider the sample space Ω = [0, 1], F = B, and P = Unif[0,1]. Let now

Xt(ω) = 1{t}(ω) =

1 if ω = t

0 if ω 6= t

Figure 15: Example of a realization from the stochastic process X.

Consider now another trivial stochastic process Yt ≡ 0 for all t ∈ [0, 1], then it is clear that
for any ω ∈ [0, 1], X(ω) 6= Y (ω). On the other hand, for any t ∈ [0, 1] we have

{Xt = Yt} = Ω \ {t},

and therefore P({Xt = Yt}) = 1. We conclude that X and Y are modifications, but not
indistinguishable.

Def. (Stopping time)

A random time τ : Ω→ [0,+∞] is called a stopping time w.r. to a filtration (Ft)t∈I if

{τ ≤ t} ∈ Ft, for all t ≥ 0.

Interpretation The interpretation remains the usual, i.e. at each time t we must be able to know
whether the event happened or not.

Remark If τ is a stopping time, then

{τ < t} =
⋃
n∈N

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸
∈ F

t− 1
n
⊂ Ft

∈ Ft,

and also {τ = t} ∈ Ft.

The difference between discrete-time and continuous-time stochastic processes lies in hitting times.

Example (Hitting times)

Let X be a continuous-time stochastic process adapted to (Ft)t≥0 and let H ⊂ Rd Borel set.
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Let now

τ :=

inf{t ≥ 0 : Xt ∈ H} if 6= ∅
+∞ if = ∅

Figure 16: Example of a hitting time on a set H of a continuous-time stochastic
process.

We are interested in finding out whether the time τ is a stopping time or not. We start by
decomposing the event

{τ ≤ t} = {τ = t} ∪ {τ < t}

= {τ = t} ∪
( ⋃
s∈[0,t)

{Xs ∈ H}
)

= {τ = t} ∪
( ⋃
s∈[0,t)∩Q

{Xs ∈ H}
)

(continuous and H open/closed)

The second set belongs to Ft if X has continuous paths and H is an open or closed set. On
the other hand, {τ = t} must be considered in two cases:

1. H is a closed set, then

{τ = t} = {Xt ∈ H}︸ ︷︷ ︸
∈Ft

∩
( ⋂
s∈[0,t)∩Q

{Xs 6∈ H}︸ ︷︷ ︸
∈Ft

)
,

therefore τ is a stopping time.
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2. H is an open set, in this case {Xt ∈ H} 6∈ Ft, and therefore we cannot use the same
argument as before:

{τ = t} =
⋃
ε>0

{Xt+ε ∈ H}︸ ︷︷ ︸
6∈Ft

∩
( ⋂
s∈[0,t)∩Q

{Xs 6∈ H}︸ ︷︷ ︸
∈Ft

)
,

therefore if H is an open set we must be able to see at least one step into the future
in order to tell whether the event happened or not =⇒ τ is not a stopping time.

Solution In order to overcome the above problem, we use a mathematical trick – that has no real
probabilistic interpretation – and require the filtration Ft to be such continuous to the right, i.e.
for any ε > 0, ⋃

ε>0

Ft+ε = Ft.

11.2 Point and counting processes

The goal here is to define a counting process whose trajectories are step functions, which will be a
very useful tool for analyzing continuous-time processes.

Figure 17: Example of a counting process.

The important thing is that the jump times of the process T1, T2, . . . , Tn, . . . are random variables
Ti ∈ R, which requires the development of a more articulated theory of stochastic processes.

Notation We denote by Sn = Tn−Tn−1 the sequence of inter-arrival times of the process, and
by

N(a, b] =
∑
n∈N

1(a,b]Tn

the number of events that occurred in the interval (a, b].
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Def. (Point process)

A stochastic point process is a discrete time stochastic process T = (Tn)n∈N0
such that

i. T0 ≡ 0

ii. T0 < T1 < T2 < . . . < Tn < . . .

iii. limn→∞ Tn = +∞

Remark Some relaxations have been considered in literature, especially properties (ii) and (iii)

could be replaced by:

ĩi. T0 ≤ T1 ≤ T2 ≤ . . . ≤ Tn ≤ . . . (Multiple arrivals)

ĩii. Removed (Explosion)

Intuition The idea behind the point process is to give a set of indices at which something happens
to the stochastic process.

Def. (Counting process)

If T is a point process, then the process N = (Nt)t≥0 defined by

Nt := N(0, t] =
∑
n∈N0

1(0,t](Tn), t ≥ 0

is called the counting process of the point process T .

Properties

› N0 = 0 by definition, since the indicator function excludes 0.

› Nt ↗ and Nt ∈ N0 since the set in the indicator function is increasing.

› The trajectories t 7−→ Nt are càdlag, i.e. continuous from the right and have limit from the
left (see Figure 17).

Def. (Homogeneous Poisson process)

A homogeneous Poisson process with intensity λ > 0 is a counting process (Nt)t≥0 such
that

a) For any k ∈ N and any finite selection 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk, increments are
independent:

(Ntk −Ntk−1
) ⊥⊥ (Ntk−1

−Ntk−2
) ⊥⊥ . . . ⊥⊥ (Nt2 −Nt1)

b) For any 0 ≤ t ≤ T , NT −Nt ∼ Pois
(
λ(T − t)

)
.
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Remark Using (b) and (N0 = 0) =⇒ Nt ∼ Pois(λt) for any t ∈ R.

Theorem 37 (Characterization of a Poisson process)

Let N = (Nt)t≥0 be a counting process, then

N is a Poisson process with intensity λ > 0 ⇐⇒ (Tn − Tn−1)n∈N
iid∼ Exp(λ).

Construction The above theorem lets us construct a Poisson process by starting with a sequence
of i.i.d Exp(λ) waiting times.

Proof.
The proof relies strongly on the independence and the loss of memory of the exponential distribution.

Lemma 8 (Distribution of the jump times)

If (Sn)n∈N is exponentially distributed with parameter λ, then Tn ∈ AC and with density

fTn(t) = λe−λt
(λt)n−1

(n− 1)!
1[0,∞)(t).

Proof.
For n = 1, by definition T1 = S1 and the result is trivial. By induction, we have

fTn+1(t) = fTn+Sn+1(t)
⊥⊥
=

∫
R
fTn(s)fSn+1(t− s) ds = . . . = λe−λt

(λt)n

n
1[0,∞)(t).

Now, we can use the above lemma to show that Nt ∼ Pois(λt), since

P(t ≥ Tn+1)
L.8
=

∫ t

0

λe−λs
(λs)n

n!
ds

parts
= P(t ≥ Tn)− e−λt (λt)

n

n!
,

we can observe from Figure 17 that in order to have Nt = n we require:

P(Nt = n) = {nth arrival before t and (n+ 1)th after t}

= P(Tn ≤ t)− P(Tn+1 ≤ t)

= e−λt
(λt)n

n!
.

Other important properties

1. For any fixed t > 0, N is continuous at t with probability 1 (consequence of Lemma 8).

2. E[Tn−Tn−1] = E[Sn] = 1
λ , therefore λ controls both the expected waiting time and the average

number of arrivals in the time unit (E[Nt] = λt).
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We discuss the compound Poisson process, which instead of jumping of a unitary value we have
jumps at T1, T2, . . . , Tk, . . . of random size Z1, Z2, . . . , Zk, . . .

Figure 18: Example of a compound Poisson process.

Def. (Compound Poisson process)

Let N = (Nt)t≥0 be a Poisson process with parameter λ, and let also (Zn)n∈N be a sequence
of i.i.d r.v.’s, and the whole sequence independent from N . The process set as

Xt =

Nt∑
k=1

Zk, t ≥ 0

is called a compound Poisson process.

Remark If Zk ∼ δ1, then X is a homogeneous Poisson process.

Markov property In the continuous-time case, the Markov property reads

E[ϕ(XT )|Ft] = E[ϕ(XT )|Xt], for all 0 ≤ t ≤ T and ϕ bounded and measurable.

Prop. 11 (Poisson process is Markov)

The Poisson process N has the Markov property w.r. to its natural filtration (FNt )t≥0.
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Proof.

We start by writing NT = Nt +

increment︷ ︸︸ ︷
(NT −Nt), and since Nt is measurable w.r. to FNt and (NT −Nt)

is independent from the

E[ϕ(NT )|FNt ]
Freez.

= E[ϕ(n+NT −Nt)]
∣∣
n=Nt

,

which is a function of Nt, and therefore has the Markov property. Moreover, we also have the
regression function

E[ϕ(NT )|Nt = n] = E[ϕ(n+ Z)], with Z ∼ Pois
(
λ(T − t)

)
.

Prop. 12 (Compound Poisson process is Markov)

A compound Poisson process X has the Markov property w.r. to its natural filtration (FXt )t≥0.

Proof.
Just like before, we can write XT = Xt + (XT −Xt), and the increment is such that

XT −Xt =

NT∑
k=Nt+1

Zk =

NT−Nt∑
j=1

ZNt+j ,

and since Zn are independent this quantity is independent of FXt . Therefore, by the freezing lemma
the process is again Markov:

E[ϕ(XT )|FXt ] = E[ϕ(x+

NT−Nt∑
j=1

Zn+j)]
∣∣
n=Nt,x=Xt

= E[ϕ(x+

NT−Nt∑
j=1

)Zj ]
∣∣
x=Xt

(indep.)

12.1 General continuous-time Markov chains

We are going to extend the concept of transition matrix to the continuous case, by describing the
evolution of the process in terms of some sort of derivative of the process.

Def. (Continuous-time discrete Markov chain)

A stochastic process (Xt)t≥0 with values on E, |E| = |N|, is a continuous-time discrete
Markov chain if it has the Markov property w.r. to its natural filtration (FXt )t≥.
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Prop. 13

A stochastic process (Xt)t≥0 with values on E is a continuous-time MC ⇐⇒

P(Xt+s = j|Xs = i,Xsk = ik, . . . , Xs0 = i0) = P(Xt+s = j|Xs = i)

for all t > 0 and 0 ≤ s0 < s1 < sk < s and i0, . . . , ik, i, j ∈ E such that the probability is
well-defined.

Def. (Homogeneous Markov Chain)

if P () does not depend on s, then the MC X is called homogeneous (HMC).

Remark For any t ≥ 0, let P (t) := (Pij(t))i,j∈E as defined by

Pij(t) = P(Xt = j|X0 = i) =
HMC
= P(Xt+s = j|Xs = i).

This object is usually called the transition semigroup of the Markov chain.

Properties

1. P (0) = I|E|

2. For all t > 0,
∑
k∈E Pik(t) = 1 for all i ∈ E.

3. P (t+ s) = P (t) · P (s) (Chapman-Kolmogorov)

Pij(t+ s) = P(Xt+s = j|X0 = i)

=
∑
k∈E

P(Xt+s = j,Xs = k|X0 = i)

= P(Xt+s = j|Xs = j,X0 = i) · P(Xs = k|X0 = i)

= P(Xt+s = j|Xs = k) · P(Xs = k|X0 = i) (Markov)

=
(
P (t) · P (s)

)
ij

Remark Denote by ν(t) the distribution of Xt, then

1. ν(t)> = ν(0)> · P (t)

2. P(X0 = i0, Xt1 = i1, . . . , Xtk = ik) = νi0(0) · Pi0i1(t1) · . . . · Pik−1ik(tk − tk−1).

Example (H.P.P)

We can cast a homogeneous Poisson process (Nt)t≥0 into this framework: if j ≥ i, we have
that the transition i→ j has probability

P(Nt+h = j|Nt = i) = P(Nt+h −Nt = j − i|Nt = i),
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and we know that the increments are Nt+h −Nt ∼ Pois(λh), therefore

P(Nt+h = j|Nt = i) =

0 if j < i

e−λh (λh)j−i

(j−i)! if j ≥ i

Example

Let N be a H.P.P set
Xt = (−1)Nt , E = {−1, 1}.

Then, we have that

P(Xt+s = 1|Xs = −1) = P
(
(−1)Ns · (−1)Nt+s−Ns = 1|Xs = −1

)
= P

(
(−1)Nt+s−Ns · (−1) = 1

)
= P(Nt+s −Ns is odd)

=

∞∑
n=0

e−λt
(λt)2n+1

(2n+ 1)!

= e−λt · 1

2
(eλt − e−λt)

=
1

2
(1− e−2λt).

Then, we have

P (t) =
1

2

(
1 + e−2λt 1− e−2λt

1− e−2λt 1 + e−2λt

)
.

When we have functions defined on intervals, one of the questions that arises is about the regularity
of the function, i.e. continuity, derivatives, . . .

12.2 Regularity of P (t)

Def. (Continuity)

Let (P (t))t≥0 be a transition semigroup (satisfies prop. 1-2-3), then we say that P is con-
tinuous if it is continuous at t = 0,

lim
h→0+

P (h) = P (0) = I.

Prop. 14 (Continuity of the semigroup)

If P (t) is continuous at t = 0, then it is continuous for every t ≥ 0.
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Def.

The generator of P (·) is its derivative

A := lim
h→0+

P (h)− P (0)

h
= P ′(h).

Remark If A = (qij)i,j∈E , then we can explicitly write

qij =


lim
h→0+

Pij(h)

h
if i 6= j

lim
h→0+

Pii(h)− 1

h
if i = j

Prop. 15 (Differentiability of P (t))

Consider for h > 0 the right derivative at time t, we can write

lim
h→0+

P (t+ h)− P (t)

h
= lim
h→0+

P (t)P (h)− P (t)

h
= P (t) lim

h→0+

h→0+−−−−→A︷ ︸︸ ︷
P (h)− I

h
= P (t) ·A.

As for the left derivative, h < 0, we can use the semigroup property to write

lim
h→0−

P (t+ h)− P (t)

h
= lim
h→0−

P (t+ h)− P (t+ h)P (−h)

h
= lim
h→0−

h→0−−−−−→P (t)︷ ︸︸ ︷
P (t+ h)

I − P (−h)

h

= P (t) lim
−h→0+

−I + P (−h)

−h

= P (t) ·A.

Theorem 38 (Kolmogorov’s forward equation)

The above calculations show that P is such that the following ODE holds:

P ′(t) = P (t) ·A,

which is defined with an initial condition P (0) = I, and thus called a forward equation.

Remark If E is finite, then A is a proper matrix and the ODE can be solved explicitly, and is the
matrix exponential

P (t) = etA =

∞∑
n=0

(tA)n

n!
.
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12.3 Continuous Markov processes

We now briefly discuss continuous Markov processes and how we can construct them by integrating
two special Markov processes: a Brownian motion and a compound Poisson process.

Figure 19: continuousTimeMarkovProcessExample

Consider Xt =
∑Nt
k=1 Zk compound Poisson process, and consider the following process:

Yt :=

∫ t

0

g(Ys) dXs ⇐⇒ dYt = g(Yt) dXt.

This defines a stochastic differential equation, and the integral has to be interpreted as a Riemann-
Stieltjes integral.

Riemann integral
∫ t

0

g(s)ds = lim
h→0

n∑
i=1

g(si)(si+1−si), where (si)i∈{1,...,n} is an equispaced grid

of increment h.

Riemann-Stieltjes We replace the ds with a dF (x), which we interpret as

lim
h→0

n∑
i=1

g(si)
(
F (si+1)− F (si)

)
Since the trajectories of Xt are step functions, the result turns out to be the values of Y at the jump
points, i.e. where Ns − lim

u→s−
Nu 6= 0. Therefore, we can construct the Riemann-Stieltjes integral as

Y (t) =

∫ t

0

Y (s) dXs =
∑

s∈[0,t]:
Ns−Ns− 6=0

g(Ys)(Xs −Xs−).

This process is more general but has still step-functions as realization paths. In order to do so, we
have to replace the integrator Xs with a Brownian motion X(s).
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Def. (Brownian motion)

A process (Wt)t≥0 with values on R defined on a is called a Brownian motion if

i. W0 = 0

ii. W is continuous almost-surely.

iii. W is adapted to (Ft)t≥0

iv. Wt −Ws ⊥ Fs for all 0 ≤ s < t

v. Wt −Ws ∼ N (0, t− s) for any 0 ≤ s < t.

Existence It’s possible to construct a stochastic process such that the above definition is satisfied,
but we don’t show it explicitly.

Last property Since E[(Wt−Ws)
2] = t−s, the last property is sometimes denoted by ∆Wt ∼

√
∆t.

Remarks

› W is a martingale

› W has the Markov property (adapted + indep. increments + freezing).

› Wt = Wt −W0 ∼ N (0, t).

› Wt −Ws ∼ N (0, t − s) and therefore we can write the transition density of the Brownian
motion as

p(t, x;T, y) =
1√

2π(T − t)
e−

1
2

(y−x)2
T−t .

This is the density of a N (x, T − t) and gives the density of the conditional law of µWT |Wt=x.

› Fixing (T, y) ∈ R× R, p(·, ·;T, y) solves the following partial differential equation

∂tp(t, x;T, y) +
1

2
∂xxp(t, x;T, y) = 0, (5)

which is called the Kolmogorov backward equation and the operator A := 1
2∂xx is called

the generator of W . For a given continuous function ϕ ∈ Cb(R) we can set

u(t, x;T ) := E[ϕ(XT )|Xt = x] =

∫
R
ϕ(y) p(y, x;T, y)︸ ︷︷ ︸

solves (5)

dy,

and that N (x, T − t) d−→ δx for t→ T , then this density solves the backward Cauchy problem∂tu(t, x;T ) + 1
2∂xxu(t, x;T ) = 0 for t < T

u(T, x;T ) = ϕ(x)
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Problem The idea for constructing a continuous-time stochastic process is to obtain

Xt = X0 +

∫ t

0

σ(Xs) dWs,

however for the Riemann-Stieltjes we requireW to have bounded variation. For the Brownian motion,
however, since W (w) has unbounded total variation we cannot simply solve this integral in a direct
way, which causes the partial sums of the Riemann-Stieltjes integral partial to not converge.

Prop. 16

The quadratic variation of the Brownian motion is bounded in L2, i.e.

N∑
i=1

|Wti −Wti−1
|2 |∆|7→0+

−−−−−→ t, in L2 for all t.

One can therefore define a stochastic integral for any process us ∈ L2
loc, where

L2
loc = {(us)s stochastic processes s.t.

∫ t

0

u2
s ds <∞},

as ∫ t

0

us dWs, t ∈ [0, T ],

which is not however a Riemann-Stieltjes integral but a more complicated construction.

Once we have this defined, we can consider integral equations of the form (diffusion process)

Xt = X0 +

∫ t

0

µ(s,Xs) ds︸ ︷︷ ︸
Lebesgue integral

+

∫ t

0

σ(s,Xs) dWs︸ ︷︷ ︸
stochastic integral

, (∗)

or equivalently in differential notation,

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt,

which yields the most general form of Markov process we can think of:

› Markov property

› Continuous trajectories

The link between stochastic differential equations, partial differential equations, and Markov pro-
cesses is due to Ito’s lemma.

Lemma 9 (Ito’s lemma)

If X solves the SDE (∗), let f ∈ C1,2
(
[0, T ] × R

)
, which means that ∂tf , ∂xf , ∂xxf are

continuous. Then, the process obtained by composing f with X, is still a diffusion and is
such that

df(t,Xt) = (∂t +At)f(t,Xt) dt+ σ(t,Xs) · ∂xf(t,Xt) dWt,
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In the lemma above, the operator At is the generator of the process Xt and is given by

At = µ(t, x)∂x +
1

2
σ2(t, x)∂xx.

Example

If µ ≡ 0 and σequiv1, then Xt is a Brownian motion and

dXt = dWt =⇒ At =
1

2
∂xx,

which means that At kind of extends the generator of a Brownian motion.

Theorem 39

Under suitable assumptions, setting

u(t, x;T ) = E[ϕ(XT )|Xt = x],

we have that u solves the following backward Cauchy problem(∂t +At)u(t, x;T ) = 0 if t < T

u(T, x;T ) = ϕ(x)

Proof.
(Application of Ito’s lemma.)
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