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Lecture 1: Concentration inequalities

LECTURE 1: CONCENTRATION INEQUALITIES

The object of the first lectures is trying to characterize deviations of sums of random variables X;
w.r. to their expected value E. These concentration inequalities take for instance the form of

P(|S — p| > t) < Bound,

where the bound is tighter than what we usually obtain using the standard inequalities that are
presented in a first course in probability. In particular, we are not looking for asymptotic results as
in the central limit theorem, but rather for estimates which are valid for any sample size N.

1.1 Hoeffding’s inequality

Let us begin by recalling two standard inequalities which are going to be especially useful in the
following sections.

Theorem 1 (Markov’s inequality)
Let X > 0 be a random variable with finite expected value, E[X] < oo, then

P(X >t) < ——, forallt>O0.

A straightforward consequence of Markov’s inequality can be obtained by replacing the random
variable X with |X — p| and squaring both sides inside the probability operator, which yields the
following inequality.

Corollary 1 (Chebyshev’s inequality)
If X is a random variable with finite variance, V[X] < oo, then

ViX]

POX -l 2 ) < -

Remark Many of the arguments that we make in this lecture will be based on the following trick:
for any random variable X and for any A > 0,

P(X — pu>t) = P(eMX—W < M) (monotone)
< e ME[MX )] (Markov)

Now, since it holds for any choice of A > 0 we can obtain the tightest bound by optimizing w.r. to
A,
P(X — p > t) < inf e ME[ME 1],

A>0

and since X is usually a sum of random variables, its characteristic function can be decomposed into
a product and evaluated quite easily.
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1.1 Hoeffding’s inequality Lecture 1: Concentration inequalities

Theorem 2 (Hoeffding’s inequality)

Let Xq,..., XN be i.i.d Rademacher(%) random variables and ay,...,an € R, then for any
t > 0 we have
N /2
IP’( a; X; > t) < exp <—>
2 2Mal}3

Sample size Unlike standard concentration inequalities based on the central limit theorem, this
inequality gives an exact bound for any value of V.

Tightness Moreover, we can see that the tail behaviour, i.e. P(Y > t), is Gaussian-like in ¢, which

means that this bound is extremely tight.

Proof.

Suppose that ||al|s = 1, otherwise we can rescale ¢ accordingly. For A > 0, we have

N Markov A A SN X
P(ZaiXi > t) < e MEle Yiz i d
=1

N

=e M H E[eriXi] (Indep.)
i=1 leraiple=Aa;
N

=e M H cosh(Aa;) (3€” + 3% = cosh(x))
i=1

At A2 SN a2 22
<e MeT 2= % (cosh(z) < ez, see here)

2
Now, if we want to find the optimal bound, Aopt = infysg e~ M+ llalls | we first notice that the
function inside the exponent is parabolic in A,

t2

AQ o parabola t
F) = A+ llall; "= Aopt = Tal2 = f(Aopt) = 3B

Therefore, by substituting the optimal A we obtain the proof of Hoeffding’s inequality,

N L
]P’(Zain; > t) <e 2lal3,
i=1
O
Exercise Restate Hoeffding’s inequality for X1,..., Xy A Ber(%), using the fact that Z; = 2X;—1
with Z; ~ Rademacher(3).

Exercise Use Hoeffding’s inequality for Bernoulli random variables to prove that by tossing a coin
N times we have the exact bound

3
P(at least 1 heads) < e NV/8,


https://math.stackexchange.com/questions/331367/cosh-x-inequality

1.1 Hoeffding’s inequality Lecture 1: Concentration inequalities

Remark We can get a double bound from the above 2 by using P(|S| > t) < P(S > t)+P(-S > t),
and observing that the Rademacher r.v. is symmetric S = —S. Therefore, both bounds are equal
and the following two-sided inequality can be stated.

Theorem 3 (Two-sided Hoeffding’s inequality)
Let X1,...,Xn be i.i.d Rademacher r.v.’s, then for allt > 0 and for all a € RY,

P(‘ZaiXi Zt) < 2exp (—W> .
i=1

We now turn to the more general problem of bounded random variables, which include as a special

case the setting of Bernoulli r.v.’s with varying parameter p;.

Theorem 4 (Hoeffding’s inequality for bounded r.v.’s)

Let X1,Xs5,..., XN be independent but not identically distributed r.v.’s, such that
X; € [mi, M;] and E[X;] < oco. Then, for all t > 0 the following inequality holds,

P(i(}( _E[X) > t) < - 2ia
z W= YL (M —mi)? )

=1

Proof.

(Exercise 2.2.7 in the book) The difficult part is achieving the constant 2 in the numerator, therefore
we start with a different constant and then use a trick to get it. Let A > 0, then by the same
argument as before we can write

N
P(Z(Xi -E[X;]) >t) < e_’\t]E[e/\ > sz—JE[Xi}]

i=1

S H E[e(Xi—BIX)]

?

< e*)t%*Zi )\(leml)
This is not as easy to optimize as before since we don’t have a quadratic form, therefore we need a
subtle trick to transform it into a more easily handled problem.
Trick In order to replace “coshz < ¢*/2 7 we can use the following trick: Let Y be a r.v. with
E[Y] =0 (our case of X —E[X]) and Y € [a,b], then for all A € R,

E[e)‘y] < 6A2 (b*;)? '

This is based on a symmetrization of Y by introducing another independent random variable Y’ dy

Jens.

and Z ~ Rademacher(3) from which we have E[e=*Y'] < e *EIY] = 1, therefore

2 (v —v")2 A2(b—a)?
)\ )2 a

Ele*Y] < E[eM]E[ Y] = E[e*Y )] = E[e* YY) = E[cosh(A(Y —=Y"))] < Ele =



1.2 Chernoff’s inequality Lecture 1: Concentration inequalities

Using this trick, we can optimize the equation using

N

—mp)?
P(Z(Xz —E[Xl]) > t) < e_MH(i)‘Q(M' - )

=1

—ep (xR

We can optimize with A > 0 and get the minimum with a different constant than 2. Finding this

other minimum requires more work.
O

Example (Book 2.2.9 — Boosting a randomized algorithm)

We have an algorithm that gives the right answer out of two classes with a probability %+ 0,
with 6 > 0. We run this algorithm N (odd) times and take the majority vote to get the final

classification.
Problem Find the minimal N such that P(correct answer) > 1 — ¢ for € € (0,1) fixed.
Solution Consider the following r.v. X7,..., Xy be the indicator of the wrong answer

1 if i*® run is wrong
X, =
0 otherwise

then, using theorem 4 with ¢ = N§, M; = 1 and m; = 0 we can bound the probability of
Wrong answer as
N

P(X1+...+XN > g) :P(E(Xi—(;—d)) zNa) < o <—2]\f)jfs2>

Therefore, in order to have the required bounded probability we need

1 1

1.2 Chernoff’s inequality

Consider the last Hoeffding’s inequality (theorem 4), then for a sum of random variables we can

write the Gaussian tail using the CLT as approximately

2

P(|Z| > 1) < 2 7.

Chernoff’s inequality is useful in regimes of sums in order to prove a bound that is again independent
from the central limit theorem. The following theorem is a merged result of Theorem 2.3.1, Exercise
2.3.2 and Exercise 2.3.5 in the book.



1.2 Chernoff’s inequality Lecture 1: Concentration inequalities

Theorem 5 (Chernoff’s inequality)

Let X1,..., XN be such that X; & Bern(p;) and consider the cumulative sum Sy = ZZ X;
with expected value p = E[SN] =, pi. Then, the following inequalities hold:

t

PSyzt)<e (L) fort>p,
t

P(Sy <t)<e™ (%) fort < p,

“SMALL DEVIATIONS™ P(|Sy — p| > 6p) < 2e~CK8” for 6 € (0,1],

where C is a universal constant (i.e. does not depend on the other quantities).

Proof.

1. The first step is always the same, let A > 0 then

P(Sy > t) =P(eMN > M) < e ME[N] = e M [ E[eM). (1)

Now for a Bernoulli random variable, E[e**¢] = (1 — p;)e® + p;e* = 1+ (e* — 1)p;, and we use
the following identity:
1+x<e® forall x>0,

to write
xT

—
E[e*] =1+ () — 1)p; < exp ((e* — 1)py).

Going back to (1), we have the following bound for any A > 0,
P(Sy >t) < e M€ =1) 3 pi _ o= Attu(et~1)

Again, by optimizing over A we find that the tightest bound from (1) is given by

t
fA) ==X+ u(e>‘ —1) = Aopt = argmin f(A) = log —,
A>0 2

from which we obtain the first Chernoff bound,
AN
P(Sy >t) <e “(—) .
2. For the second inequality, proceed as before using
P(Sy <t) "2 P(e N > 7).

3. We can obtain the bound on P(|Sy — p| > du) by using the fact that

(1,(2)
P(ISy — pl = 0p) <P(Sy —p 2 0p) + P(Sy —p < —op) <



1.2 Chernoff’s inequality Lecture 1: Concentration inequalities

Theorem 6 (Poisson tail behaviour)

Let Z ~ Pois(y) with v > 0, i.e. X has probability mass function P(X = k) = e*W'Yk—];, for
k=0,1,.... Then,

1. For all § € (0,1] theorem 5-3 holds

P(1Z — | > 67) < 2
2. Let now t > vy, then the following bound holds

(x> <e (D) (A)

Remark These bound are extremely useful in practical applications and is similar to Chernoft’s
bound (theorem 5), which works instead for a sum of Bernoulli variables.

Remark 2 If p; = 3, then Sy ~ Z ~ Pois(y) for N > 1 and the rate of convergence is very fast,
therefore this result could also be obtained as a limit. However, the above theorem is ezxactly valid.
Proof.

(Execise) Prove equation (A) using the basic trick P(X > t) < e~ *E[e*¥], which can be computed
explicitly, and then optimize over A\ > 0. Briefly comment on why this bound is optimal.

O



Lecture 2: Subgaussian random variables

LECTURE 2: SUBGAUSSIAN RANDOM VARIABLES

In this lecture we generalize Hoeffding’s inequality to subgaussian random variables, which are a class
of distributions that enjoy nice properties and are fundamental in the high-dimensional setting. We

begin by recalling some properties of the Gaussian distribution

Prop. 1 (Properties of the gaussian distribution)
Let X ~ N(0,1), then the following statements hold:

1. We have a tail estimate for X given by

(1—1>1e‘5<P(X>t)<1 L -2 150
t t3) Vor - T T tN2m ’ ’

This estimate in particular implies that

1 t2
P(X >t < ez t>1,

V2r

+2

P(IX|>t) <27 t>0.

2. Given p > 1, we have that

I1X | z» = E[|X[?]7 = ﬂ(

3. The moment-generating function of X is E[e?X] = ekzi for all X € R.

Corollary 2 (Bounded norm of a gaussian r.v.)
If X ~ N(0,1) there exists a C > 0 such that || X||z» < C\/p for all p > 1.

Proof.
Use Stirling’s approximation for the Gamma function to obtain the bound.
O

With these properties we can now discuss another class of random variables, which include the

Gaussian distribution.

2.1 Space of subgaussian random variables

We begin the analysis of subgaussian random variables by stating a sequence of equivalent properties

that turn out to be equivalent to each other.

2021-11-20



2.1 Space of subgaussian random variables Lecture 2: Subgaussian random variables

Theorem 7 (Equivalence of properties for subgaussian r.v.’s)

Let X be a generic random variable, then the following properties are equivalent:

~

. (TAIL OF X ) There ezists a K1 > 0 such that P(|X| > t) < 2¢™"/M for all t > 0.
2. (MOMENTS OF X ) There exists a ky > 0 such that || X||z» < koy/p for all p > 1.
3. (MGF OF X2) There exists a ks > 0 such that E[eX"] < k% for |A| < é
4. (MGF OF X2) There exists a ky > 0 such that E[eX" /%] < 2.

In addition, if E[X] = 0 we can add another equivalent property:

5. (MFG OF X ) There exists a ks > 0 such that E[e*X] < e for all A € R.

Moreover, the above constants ki, . .., ks differ by a constant factor, i.e. if one property holds
then all properties hold and 3C;; > 0 such that

ki < Cijk;  for all i, j, with a Cy; that does not depend on X.

Proof.
Long and boring.

Remark 5. really needs that E[X] = 0, otherwise it does not work independently of X.

Given the usefulness of these bounds, it’s important to isolate the class of r.v.’s that share these
properties.

Def. (Subgaussian r.v.)

A r.v. X is called subgaussian if it satisfies one of the equivalent properties in theorem 7.

Theorem 8 (Subgaussian random variables form a vector space)

The set of subgaussian random variables is a vector space, which means that

XY subgaussian = X +Y is subgaussian

X subgaussian —> «aX s subgaussian

Proof.
(x4v)?
We aim to prove that E[e («+9* | < 2, we can consider

X+Y a X, b Y

a+b atba btabd

3

use the fact that e*” is convex to conclude that

(z+y)? a 22 b 42
e (a+b)? S ea? + ev?
a+b a+b




2.1 Space of subgaussian random variables Lecture 2: Subgaussian random variables

Def. (Subgaussian norm)

Let X be a subgaussian r.v., then we define the subgaussian norm of X as

| X ||, := inf {t >0: E[ex2/t2] < 2}.

Remark Take t = k4 and we see that the set over which the inf is taken is never empty.

Remark 2 By dominated convergence this infimum is a minimum.

Prop. 2 (Subgaussian norm is indeed a norm)

Il - lly s @ norm on the space of subgaussian r.v.’s.

Proof.

Everything is simple, except for the triangle inequality which is not straightforward.

Finally, we have a last observation which

Prop. 3 (Subgaussian r.v.’s are a Banach space)

Let (Q, F,P) be a probability space, V- = {X r.v subgaussian on Q} and || - |4, as defined
above. Then, (V.|| - |ly,) is a Banach space.

Since we have that the optimal constant for property 4. is given by the subgaussian norm || X||y,,
then we have the following updated set of inequalities in terms of ky = || X[, :

ct?

1. P(X|>1t) <2 " forall ¢t > 0.

2. | X|lzr < C||X||ypy+/p for all p > 1.

x2
—=—

3 Ele"M2] < 2.

4. I E[X] = 0, then E[eX] < ¢\ IXI%

Prop. 4 (Bounded r.v.’s are subgaussian)

If X is a bounded random variable then X is subgaussian.

Proof.

1X e
X <
Xl < T3




2.2 General Hoeffding’s inequality Lecture 2: Subgaussian random variables

Non-subgaussian r.v.’s Poisson, exponential, Pareto, Cauchy, ...
For subgaussian random variables we have something similar to the property of Gaussian random
variables

Prop. 5 (Sums of subgaussians)

Let X1, ..., Xn be i.i.d subgaussian random variables with E[X;] = 0 for alli. Then, ZZ 1 X

1S subgausszan and

N ) N

IS x|, <o ixiz.
— P2 —
i=1 =1

Moreover, since || - ||7,, is a norm, we also have the following bound for free:

N ) N

I> x| <o IXilye
— P2 —
i=1 =1

Proof.
Since E[X;] = 0 then also E[}", X;] = 0 and we use property 5. to show

,\z X H CN?|IXl13,

_ ORI,

Moreover, since the best constant is k4 we have the norm.

2.2 General Hoeffding’s inequality

Subgaussian random variables are extremely useful since we have a general form of the Hoeffding’s
inequality without passing through Rademacher or boundedness.

Theorem 9 (General Hoeffding’s inequality)

Let X1,..., Xy be independent subgaussian random variables with E[X;] = 0 for alli. Then,
for each t > 0 we have a tail estimate

N Ct?
P Xi|>2t) <2 TS xR )
(I2x1=¢) eXP( ziilnxz-ni)

=il

Proof.

Using the previous Prop. 5, we have that X := Zf\il X; is a subgaussian r.v. and we can write

ct?

P(|X|>1t) < 2¢ 1X1%; , forallt>0.

Using the bound on the norm given by Prop. 5 and taking for instance .

10



2.2 General Hoeffding’s inequality Lecture 2: Subgaussian random variables

Corollary 3 (General Hoeffding’s inequality 2)

Let X1, Xs,..., X, be independent subgaussian random wvariables with E[X;] = 0, and let
ai,asg,...,a, € R. Then,

al ct?
P(\ > aXi| 2 t) S ey <_22> )
2 Flal}
where k = max; || X,]|7, .
Proof.

Use again the same properties, recall the homogeneity property of the norm and then bound using

the maximum of the |a;|’s.

O

Note We can also apply the theorem to general X1, ..., Xy independent and subgaussian but we
need to replace X; by X; — E[X;] beforehand.

Recall that || X — E[X]||z < ||X||z2. This does not hold for the subgaussian norm, however we do

have a lemma in this direction.

Lemma 1 (Centering of a subgaussian r.v.)

Let X be subgaussian, then X — E[X] is subgaussian (vector space) and

1X = E[X][lyp, < ClI X[,

Proof.

| - ||, is @ norm, therefore
X = B[XTllyo < [ Xl + 1E[X][ly,

= [ Xlly, + [E[X]] - (1]l

<X gy + X 21 - [Tl (EX] <E[X]] = [[X]z)
<X gy +C - 1 X gy - V- 1], (using 2.)
< KX |y, -

11



Lecture 3: Geometry of random vectors

LECTURE 3: GEOMETRY OF RANDOM VECTORS

If we consider a Gaussian distribution, X ~ N(0,1), then we might be interested in the length of
|| X||3. However, X2 ~ x2 but this is not a subgaussian distribution:

]. 1 ]. 2 2
2 — —t/2 —t2/k
P(X*> 1) =P(X|> Vi) >C <t1/2 t3/2> T £2e 0,

which violates the lower bound 1. of the subgaussian random variable.

3.1 Subexponential random variables

We start with a characterization of a set of properties:

Theorem 10 (Equivalence of properties for subexponential r.v.’s)

Let X be a generic random wvariable, then the following properties are equivalent:
1. (TAL OF X ) There exists a ki > 0 such that P(|X| > t) < 2e~"/*1 for all t > 0.
2. (MOMENTS OF X ) There exists a ko > 0 such that || X||rr < kop for all p > 1.
3. (MGF OF |X|) There exists a k3 > 0 such that E[e*X]] < e for |A| < 1713
4. (MGF OF |X|) There exists a ky > 0 such that E[e/X1/*4] < 2.

In addition, if E[X] = 0 we can add another equivalent property:

5. (MFG oF X ) There exists a ks > 0 such that E er X < ks A? for all |\ < A
ks

Moreover, the above constants ki, ..., ks differ by a constant factor, i.e. if one property holds
then all properties hold and 3C;; > 0 such that

ki < Cijk;  for all i, j, with a Cy; that does not depend on X.
Remark Property 5. changes in condition since the mgf might not exist for all A € R.
Def. (Subexponential r.v.’s)

A random variable X satisfying one (and therefore all) of the above properties is called
subexponential.

Def. (Subexponential norm)
Given X subexponential r.v., we define the subexponential norm as

| Xy, = inf{t > 0: E[eXI/*] < 2}.

Prop. 6

The set of subexponential random variables equipped with the ||- |4, norm is a Banach space.

12
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3.1 Subexponential random variables Lecture 3: Geometry of random vectors

Example (Subgaussian —> subexponential)

Any subgaussian random variable is also subexponential, for example take any property
above in theorem 10 and check it.

Example (Exponential)

The exponential r.v. is subexponential, indeed

X ~Exp(y) = P(X >t)=e "

Example (Poisson)

The Poisson r.v. is subexponential, since
A
X ~ Pois(y) = E[eM] =e7e?® <M

There is a deep connection between subexponential and subgaussian random variables, summarized
by the following lemma.

Lemma 2 (Subgaussian square is subxeponential)

A 1. X is subgaussian <= X? is subexponential, moreover
1221y, = 1X113,
Proof.
If we consider the subexponential norm, we have
1X2|lp, = inf{t > 0: E[eX /%] < 2}

= inf{k® > 0: E[e*X/¥] < 2}.

Lemma 3 (Product of subgaussians)

Let XY be subgaussian 1.v.’s not necessarily independent, then X -Y is subexponential and

XY [l < X g 1Y [ -

Proof.
Without loss of generality we take || X ||y, = ||Y|l¢, = 1 (by bilinearity), then we have to prove that

[ XY |, < 1.
Equivalently, we have || X||y, =1 = [|Y ||y, that implies

E[eX’] <2, E[¥]<2

) )

13



3.1 Subexponential random variables Lecture 3: Geometry of random vectors

we want to prove that
E[e/XY1] < 2.

We use the fact that ab < “231’2 by Young’s inequality, therefore

X2 Y2
XY | < —+ —
XY < 5+
Y. Y. X2 Y2
Bl SEpeer S EC L Bl 2y 2,

Prop. 7 (Centering)
There exists a C' > 0 such that for all X subexponential,

X = E[X]lly; < Cl[X]l,

Proof.

Analogous to subgaussian.

O

We consider now an inequality for subexponential random variables, which implies a part on sub-

gaussian random variables.

Remark Consider a bounded r.v. X, then its moment-generating function is

A0

2
E[e*] = E[1+ X + %XQ +0(A\?X?)]

)\2
=1+ ?E[Xﬂ +0(\?)

2
~ oS EIX?]

This property is very similar to property 5. of subexponential and subgaussian random variables.

Theorem 11 (Bernstein’s inequality)
Let X1, Xo,..., X, be independent, mean-zero subexponential r.v.’s. Then, for all t > 0 we

have

N t2 .
P( Xi Zt>§26Xp —C-min{ , } _
2 S X[, ma (| Xslly,

3=il

14
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3.2 Random vectors in high dimensions Lecture 3: Geometry of random vectors

Proof.
We use property 5. to write

N
P(S > t) < e—)\tHE[eAXi]
i=1

IA&

N 2 2 C
AT LCNIIXG 12 for |\ <
e e 1 or <
11 or X < %1,y

< MO LI,

Now, if in the worst case = ﬁ is to the right of the minimum of the parabola, we have to take
illdy
it instead of minimizing the parabola.

t TN t
NTE if A > )
>\Opt — ,2\0 22 H‘Xi”wl 2C Ez HX'lH’lh

fo<A<...

Replacing X; with a;X; in Bernstein’s inequality above, we get the more general bound.

Theorem 12 (Bernstein’s inequality for weighted sums)

Let X1, Xo, ..., X, be independent, mean-zero subexponential r.v.’s. Then, for all t > 0 we

have
N 2 t
]P’(‘ a; X;| > t) < 2exp (—c . min{ , }) ,
; K2|jall5” Klla]|oo

where K = max; ||.X; ||y, -

Corollary 4 (Special case of Bernstein’s inequality)

Choosing a; = % in theorem 12 we have a quantitative law of large numbers for subexponen-
tial random variables,

1 N
P52 x

where K = max; || X;]|y, -

>t) < 2exp{ —cN min{i i}
- — p K27K b

Remark If we have subexponential random variables with mean zero, then we can avoid using K
and simply write the following two-regime inequality by replacing ¢ with ¢/v/ N

2exp (—ct?) if t <CvV/N SMALL DEVIATIONS
2 exp <—t\/ﬁ) if t > CvV/N LARGE DEVIATIONS

1 N
Py X

>1) <
where C' and ¢ can depend on || X||y,, but does not if they are i.i.d random variables.

15



3.2 Random vectors in high dimensions Lecture 3: Geometry of random vectors

3.2 Random vectors in high dimensions

Theorem 13 (Concentration of the norm)

Let X € R™ be a random vector with independent subgaussian coordinates X; such that
E[X?] = 1. Then,
11Xl2 = v/all,, < CK, (2)

where k = max; || X;||y, -

Proof.
We can apply Bernstein inequality to see that by centering X2,

X2 1|y LT OUX2|l, = CX[2. < OK®
1 X5 — 1y, X5 g, = CllXilly, < ,

and therefore

1 1 & Cor.4 . U u
P (nXHg 1> u) — EZ(XE —1) < <2exp (—c.n.mln{TZK, K2 }) .
subexp

Now, since K > 1 we have that K* > K? and by renaming the absolute constants,
P l||X||2—1>u :Qexp<—@'min{u2 u})
n 2 - k4 ’ '

Trick If we take z > 0 and 6 > 0, then a trivial trick yields

|z—1] > 6 = |2* — 1| > max {4,6%}

Remark E[||X||3] = E[}", X?] = n so it’s not surprising to see \/n above.

Equivalent Recall by the properties that

—ct?
L4

(2) —= P(‘”X”Q_\/ﬁ‘ Zt) < 2exp (— ), for all ¢t > 0.

What is surprising is that ¢ does not depend on n, i.e. we can find a bound independent of n such
that

Vv —to < || X2 < Vn+to.

16



3.2 Random vectors in high dimensions Lecture 3: Geometry of random vectors

Figure 1: errorOfOrderOneSquareRoot

Consequences As an exercise, we have

Vi - CK? < E[|[X||s] < Vi + CK?
V[ X ) < CK*

Def. (Covariance matrix)

Let X be random vector in R™ with E[X] = u, then the covariance matriz of X is
Cov(X) = E[(X — p)(X — ) 7] = E[XXT] — ",

where Cov(X);; = Cov(X;, X;).

Def. (2nd-moment)

The second-moment matrixz of X is
Y(X)=E[XXT]

where Eij = E[XlXJ]

Remark If E[X] = 0, then Cov(X) = X(X). For all X random vectors, Cov(X) and X(X) are

symmetric positive semidefinite matrices.
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Lecture 4: Concentration of measure

LECTURE 4: CONCENTRATION OF MEASURE
2021-11-22

Def. (Isotropy)

A random vector X € R™ is called isotropic if

YX)=EXX"]=1,.

Reduction to isotropy

a) Let Z be an isotropic mean-zero r.v. in R™, fix u € R™ and ¥ € M« (R), £ > 0 then
X :=pu+3x2z7

has mean p and Cov(X) = X.

b) If X is ar.v. then Z := £~1/2(z — p) is an isotropic mean-zero r.v.

Lemma 4 (Characterization of isotropy)

A random vector X € R"™ is isotropic if and only if
E[(X, )] = [|z[l3, VzeR" (1)
where (-,-) is the scalar product in R%.

Proof.
LHS of (1) is

E{(ZXx) (;ijj)} = ;xiij[Xin].

i

Since Y, 27 = ||z[|2%, we have (1) <= E[X;X,] = §;;, therefore <= X is isotropic.

Lemma 5 (Norm of isotropic r.v.’s)

Let X be an isotropic r.v. in R™, then E[|| X||3] = n. Moreover, if X and Y are independent
isotropic r.v.’s in R™, then E[(X,Y)?] = n.

Proof.
For the first equality, we have

1x1

—_
E[| X 3] = E[X T X]

=Eltr XX '] (cyclic)
=trE[XX "] (linearity)
=trl, (isotropy)
=n.
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Lecture 4: Concentration of measure

O

Order of magnitude if we define X = ||))<<Hz and Y = H;’/\Iz with X |l Y isotropic, then we have
that

[X1l2 ~ v

[Y]l2 ~ vn

(X, V)]~ Vn

and therefore

XYV yE 1
&= 155w ~ v~ v

Example (Standard multivariate Gaussian)

Let X = (X3, Xo,...,X,) with X; iiNclj\f((), 1), then X ~ N(0,1,) and I,, = Cov(X). Hence,
X is an isotropic random vector. Recall theorem 13, then the norm of X has concentration
bound

2

P ([IX]l2 — v/ > 1) < 2¢7 5

We can apply the concentration of the norm to the standard Gaussian vector X ~ N(0, I,)
using another universal constant to include || Z||y, since they are i.i.d marginals,

X~ N(O,L) = P (|| X2 — va > t]) <267,

Link between Gaussian distribution and Hausdorff measure on S 1.

Figure 2: Gaussian point cloud in two dimensions and its visualization in high dimen-
sions. The standard normal distribution is very close to a Unif(y/nS™ 1) distribution
on the sphere of radius /n.

Theorem 14 (Cramér-Wald)
If XY are random vectors in R"™ and (X, 9) 4 (Y,9) for all ¥ € R™, then X 4y

Proof.
No.
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Lecture 4: Concentration of measure

Def. (Subgaussian random vector)

A random vector X € R” is called subgaussian if the one-dimensional marginals (X, ) are
subgaussian random variables for all ¥ € R”.

Def. (Subgaussian norm of random vectors)

The subgaussian norm of a subgaussian random vector X is defined as

[ Xy, = sup [[{F, Xy,
JesSn—1

Prop. 8 (Subgaussian marginals)

X € R” is a subgaussian random vector if and only if X1,...,X, are subgaussian random

variables.

Lemma 6 (Bound on the subgaussian norm)

Let X = (X1,...,X,) € R™ be a random vector with independent, mean-zero and subgaussian
coordinates. Then, X is a subgaussian random vector and

< 3 .
X lva < € max Xill.

Prop. 9 (Sum of subgaussian vectors)

Let X1,...,X, be independent mean-zero subgaussian random vectors. Then Z =Y I | X;
s a subgaussian random vector and

N
1D Xillh, < C ) IIXll,
i i=1

Example (Examples of subgaussian random vectors)

Theorem 15 (Uniform distribution on a sphere)
Let X ~ Unif(\/nS™~ 1Y), then X is subgaussian and

[ X1y, < C.

Proof.
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