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Lecture 1: Concentration inequalities

Lecture 1: Concentration inequalities
2021-11-20

The object of the first lectures is trying to characterize deviations of sums of random variables Xi

w.r. to their expected value E. These concentration inequalities take for instance the form of

P(|S − µ| > t) ≤ Bound,

where the bound is tighter than what we usually obtain using the standard inequalities that are
presented in a first course in probability. In particular, we are not looking for asymptotic results as
in the central limit theorem, but rather for estimates which are valid for any sample size N .

1.1 Hoeffding’s inequality

Let us begin by recalling two standard inequalities which are going to be especially useful in the
following sections.

Theorem 1 (Markov’s inequality)

Let X ≥ 0 be a random variable with finite expected value, E[X] <∞, then

P(X ≥ t) ≤ E[X]

t
, for all t > 0.

A straightforward consequence of Markov’s inequality can be obtained by replacing the random
variable X with |X − µ| and squaring both sides inside the probability operator, which yields the
following inequality.

Corollary 1 (Chebyshev’s inequality)

If X is a random variable with finite variance, V[X] <∞, then

P(|X − µ| ≥ t) ≤ V[X]

t2
.

Remark Many of the arguments that we make in this lecture will be based on the following trick:
for any random variable X and for any λ > 0,

P(X − µ ≥ t) = P(eλ(X−µ) ≤ eλt) (monotone)

≤ e−λtE[eλ(X−µ)] (Markov)

Now, since it holds for any choice of λ > 0 we can obtain the tightest bound by optimizing w.r. to
λ,

P(X − µ ≥ t) ≤ inf
λ>0

e−λtE[eλ(X−µ)],

and since X is usually a sum of random variables, its characteristic function can be decomposed into
a product and evaluated quite easily.
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1.1 Hoeffding’s inequality Lecture 1: Concentration inequalities

Theorem 2 (Hoeffding’s inequality)

Let X1, . . . , XN be i.i.d Rademacher( 1
2 ) random variables and a1, . . . , aN ∈ R, then for any

t > 0 we have

P
( N∑
i=1

aiXi ≥ t
)
≤ exp

(
− t2

2‖a‖22

)

Sample size Unlike standard concentration inequalities based on the central limit theorem, this
inequality gives an exact bound for any value of N .

Tightness Moreover, we can see that the tail behaviour, i.e. P(Y ≥ t), is Gaussian-like in t, which
means that this bound is extremely tight.

Proof.
Suppose that ‖a‖2 = 1, otherwise we can rescale t accordingly. For λ > 0, we have

P
( N∑
i=1

aiXi ≥ t
) Markov
≤ e−λtE[eλ

∑N
i=1 aiXi ]

= e−λt
N∏
i=1

E[eλaiXi ]︸ ︷︷ ︸
1
2 e
λai+ 1

2 e
−λai

(Indep.)

= e−λt
N∏
i=1

cosh(λai) ( 1
2e
x + 1

2e
−x = cosh(x))

≤ e−λteλ
2

2

∑N
i=1 a

2
i (cosh(x) ≤ e x

2

2 , see here)

Now, if we want to find the optimal bound, λopt = infλ>0 e
−λt+λ2

2 ‖a‖
2
2 , we first notice that the

function inside the exponent is parabolic in λ,

f(λ) = −λt+
λ2

2
‖a‖22

parabola
=⇒ λopt =

t

‖a‖22
=⇒ f(λopt) = − t2

2‖a‖22
.

Therefore, by substituting the optimal λ we obtain the proof of Hoeffding’s inequality,

P
( N∑
i=1

aiXi ≥ t
)
≤ e
− t2

2‖a‖22 .

Exercise Restate Hoeffding’s inequality forX1, . . . , XN
iid∼ Ber( 1

2 ), using the fact that Zi = 2Xi−1

with Zi ∼ Rademacher( 1
2 ).

Exercise Use Hoeffding’s inequality for Bernoulli random variables to prove that by tossing a coin
N times we have the exact bound

P
(
at least

3

4
heads

)
≤ e−N/8.
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1.1 Hoeffding’s inequality Lecture 1: Concentration inequalities

Remark We can get a double bound from the above 2 by using P(|S| ≥ t) ≤ P(S ≥ t)+P(−S ≥ t),
and observing that the Rademacher r.v. is symmetric S = −S. Therefore, both bounds are equal
and the following two-sided inequality can be stated.

Theorem 3 (Two-sided Hoeffding’s inequality)

Let X1, . . . , XN be i.i.d Rademacher r.v.’s, then for all t ≥ 0 and for all a ∈ RN ,

P
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t) ≤ 2 exp

(
− t2

2‖a‖22

)
.

We now turn to the more general problem of bounded random variables, which include as a special
case the setting of Bernoulli r.v.’s with varying parameter pi.

Theorem 4 (Hoeffding’s inequality for bounded r.v.’s)

Let X1, X2, . . . , XN be independent but not identically distributed r.v.’s, such that
Xi ∈ [mi,Mi] and E[Xi] <∞. Then, for all t ≥ 0 the following inequality holds,

P
( N∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

Proof.
(Exercise 2.2.7 in the book) The difficult part is achieving the constant 2 in the numerator, therefore
we start with a different constant and then use a trick to get it. Let λ > 0, then by the same
argument as before we can write

P(

N∑
i=1

(Xi − E[Xi]) ≥ t) ≤ e−λtE[eλ
∑
iXi−E[Xi]]

= e−λt
∏
i

E[eλ(Xi−E[Xi])]

≤ e−λt+
∑
i λ(Mi−mi)

This is not as easy to optimize as before since we don’t have a quadratic form, therefore we need a
subtle trick to transform it into a more easily handled problem.

Trick In order to replace “coshx ≤ ex
2/2 ” we can use the following trick: Let Y be a r.v. with

E[Y ] = 0 (our case of X − E[X]) and Y ∈ [a, b], then for all λ ∈ R,

E[eλY ] ≤ eλ
2 (b−a)2

2 .

This is based on a symmetrization of Y by introducing another independent random variable Y ′ d
= Y

and Z ∼ Rademacher( 1
2 ) from which we have E[e−λY

′
]

Jens.
≤ e−λE[Y ] = 1, therefore

E[eλY ] ≤ E[eλY ]·E[−λY
′
] = E[eλ(Y−Y

′)] = E[eλZ(Y−Y ′)] = E[cosh(λ(Y−Y ′))] ≤ E[eλ
2 (Y−Y ′)2

2 ] = e
λ2(b−a)2

2 .
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1.2 Chernoff’s inequality Lecture 1: Concentration inequalities

Using this trick, we can optimize the equation using

P
( N∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ e−λt

∏
i

eλ
2 (Mi−mi)

2

2

= exp
(
− λt+

λ2

2

∑
i

(Mi −mi)
2

2

)
.

We can optimize with λ > 0 and get the minimum with a different constant than 2. Finding this
other minimum requires more work.

Example (Book 2.2.9 – Boosting a randomized algorithm)

We have an algorithm that gives the right answer out of two classes with a probability 1
2 +δ,

with δ > 0. We run this algorithm N (odd) times and take the majority vote to get the final
classification.

Problem Find the minimal N such that P(correct answer) ≥ 1− ε for ε ∈ (0, 1) fixed.

Solution Consider the following r.v. X1, . . . , XN be the indicator of the wrong answer

Xi =

1 if ith run is wrong

0 otherwise

then, using theorem 4 with t = Nδ, Mi = 1 and mi = 0 we can bound the probability of
wrong answer as

P
(
X1 + . . .+XN ≥

N

2

)
= P

( N∑
i=1

(Xi − (
1

2
− δ)) ≥ Nδ

) 4
≤ exp

(
−2N �2δ2

��N

)
.

Therefore, in order to have the required bounded probability we need

−2Nδ2 ≤ log ε ⇐⇒ N ≥ 1

2δ2
log

1

ε
.

1.2 Chernoff’s inequality

Consider the last Hoeffding’s inequality (theorem 4), then for a sum of random variables we can
write the Gaussian tail using the CLT as approximately

P(|Z| ≥ t) ≤ 2e−
t2

2 .

Chernoff’s inequality is useful in regimes of sums in order to prove a bound that is again independent
from the central limit theorem. The following theorem is a merged result of Theorem 2.3.1, Exercise
2.3.2 and Exercise 2.3.5 in the book.
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1.2 Chernoff’s inequality Lecture 1: Concentration inequalities

Theorem 5 (Chernoff’s inequality)

Let X1, . . . , XN be such that Xi
iid∼ Bern(pi) and consider the cumulative sum SN =

∑
iXi

with expected value µ = E[SN ] =
∑
i pi. Then, the following inequalities hold:

P(SN ≥ t) ≤ e−µ ·
(eµ
t

)t
for t > µ,

P(SN ≤ t) ≤ e−µ
(eµ
t

)t
for t < µ,

“Small deviations”: P(|SN − µ| ≥ δµ) ≤ 2e−Cµδ
2

for δ ∈ (0, 1],

where C is a universal constant (i.e. does not depend on the other quantities).

Proof.

1. The first step is always the same, let λ > 0 then

P(SN ≥ t) = P(eλSN ≥ eλt) ≤ e−λtE[eλSN ] = e−λt
∏
i

E[eλXi ]. (1)

Now for a Bernoulli random variable, E[eλXi ] = (1− pi)e0 + pie
λ = 1 + (eλ − 1)pi, and we use

the following identity:
1 + x ≤ ex for all x > 0,

to write

E[eλXi ] = 1 +

x︷ ︸︸ ︷
(eλ − 1)pi ≤ exp

(
(eλ − 1)pi

)
.

Going back to (1), we have the following bound for any λ > 0,

P(SN ≥ t) ≤ e−λte(e
λ−1)

∑
i pi = e−λt+µ(e

λ−1).

Again, by optimizing over λ we find that the tightest bound from (1) is given by

f(λ) = −λt+ µ(eλ − 1) =⇒ λopt = argmin
λ>0

f(λ) = log
t

µ
,

from which we obtain the first Chernoff bound,

P(SN ≥ t) ≤ e−µ
(eµ
t

)t
.

2. For the second inequality, proceed as before using

P(SN ≤ t)
λ>0
= P(e−λSN ≥ e−λt).

3. We can obtain the bound on P(|SN − µ| ≥ δµ) by using the fact that

P(|SN − µ| ≥ δµ) ≤ P(SN − µ ≥ δµ) + P(SN − µ ≤ −δµ)
(1),(2)

≤ . . .
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1.2 Chernoff’s inequality Lecture 1: Concentration inequalities

Theorem 6 (Poisson tail behaviour)

Let Z ∼ Pois(γ) with γ > 0, i.e. X has probability mass function P(X = k) = e−γ γ
k

k! , for
k = 0, 1, . . .. Then,

1. For all δ ∈ (0, 1] theorem 5-3 holds

P(|Z − γ| ≥ δγ) ≤ 2e−Cλδ
2

2. Let now t > γ, then the following bound holds

P(X ≥ t) ≤ e−γ
(eγ
t

)t
(A)

Remark These bound are extremely useful in practical applications and is similar to Chernoff’s
bound (theorem 5), which works instead for a sum of Bernoulli variables.

Remark 2 If pi = γ
N , then SN ≈ Z ∼ Pois(γ) for N � 1 and the rate of convergence is very fast,

therefore this result could also be obtained as a limit. However, the above theorem is exactly valid.

Proof.
(Execise) Prove equation (A) using the basic trick P(X ≥ t) ≤ e−λtE[eλX ], which can be computed
explicitly, and then optimize over λ > 0. Briefly comment on why this bound is optimal.
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Lecture 2: Subgaussian random variables

Lecture 2: Subgaussian random variables
2021-11-20

In this lecture we generalize Hoeffding’s inequality to subgaussian random variables, which are a class
of distributions that enjoy nice properties and are fundamental in the high-dimensional setting. We
begin by recalling some properties of the Gaussian distribution

Prop. 1 (Properties of the gaussian distribution)

Let X ∼ N (0, 1), then the following statements hold:

1. We have a tail estimate for X given by(
1

t
− 1

t3

)
1√
2π
e−

t2

2 ≤ P(X ≥ t) ≤ 1

t

1√
2π
e−

t2

2 , t > 0.

This estimate in particular implies that

P(X ≥ t) ≤ 1√
2π
e−

t2

2 t ≥ 1,

P(|X| ≥ t) ≤ 2e−
t2

2 t ≥ 0.

2. Given p ≥ 1, we have that

‖X‖Lp = E[|X|p]
1
p =
√

2

(
Γ( 1+p

2 )

Γ( 1
2 )

) 1
p

3. The moment-generating function of X is E[eλX ] = e
λ2

2 for all λ ∈ R.

Corollary 2 (Bounded norm of a gaussian r.v.)

If X ∼ N (0, 1) there exists a C > 0 such that ‖X‖Lp ≤ C
√
p for all p ≥ 1.

Proof.
Use Stirling’s approximation for the Gamma function to obtain the bound.

With these properties we can now discuss another class of random variables, which include the
Gaussian distribution.

2.1 Space of subgaussian random variables

We begin the analysis of subgaussian random variables by stating a sequence of equivalent properties
that turn out to be equivalent to each other.

7



2.1 Space of subgaussian random variables Lecture 2: Subgaussian random variables

Theorem 7 (Equivalence of properties for subgaussian r.v.’s)

Let X be a generic random variable, then the following properties are equivalent:

1. (Tail of X) There exists a K1 > 0 such that P(|X| > t) ≤ 2e−t
2/k21 for all t ≥ 0.

2. (Moments of X) There exists a k2 > 0 such that ‖X‖Lp ≤ k2
√
p for all p ≥ 1.

3. (Mgf of X2) There exists a k3 > 0 such that E[eλ
2X2

] ≤ ek23λ2

for |λ| ≤ 1
k3
.

4. (Mgf of X2) There exists a k4 > 0 such that E[eX
2/k24 ] ≤ 2.

In addition, if E[X] = 0 we can add another equivalent property:

5. (Mfg of X) There exists a k5 > 0 such that E[eλX ] ≤ ek5λ2

for all λ ∈ R.

Moreover, the above constants k1, . . . , k5 differ by a constant factor, i.e. if one property holds
then all properties hold and ∃Cij > 0 such that

ki ≤ Cijkj for all i, j, with a Cij that does not depend on X.

Proof.
Long and boring.

Remark 5. really needs that E[X] = 0, otherwise it does not work independently of X.

Given the usefulness of these bounds, it’s important to isolate the class of r.v.’s that share these
properties.

Def. (Subgaussian r.v.)

A r.v. X is called subgaussian if it satisfies one of the equivalent properties in theorem 7.

Theorem 8 (Subgaussian random variables form a vector space)

The set of subgaussian random variables is a vector space, which means that

X,Y subgaussian =⇒ X + Y is subgaussian

X subgaussian =⇒ αX is subgaussian

Proof.

We aim to prove that E[e
(X+Y )2

(a+b)2 ] ≤ 2, we can consider

X + Y

a+ b
=

a

a+ b

X

a
+

b

b+ a

Y

b
,

use the fact that ex
2

is convex to conclude that

e
(x+y)2

(a+b)2 ≤ a

a+ b
e
x2

a2 +
b

a+ b
e
y2

b2 .

8



2.1 Space of subgaussian random variables Lecture 2: Subgaussian random variables

Def. (Subgaussian norm)

Let X be a subgaussian r.v., then we define the subgaussian norm of X as

‖X‖ψ2 := inf
{
t > 0 : E[eX

2/t2 ] ≤ 2
}
.

Remark Take t = k4 and we see that the set over which the inf is taken is never empty.

Remark 2 By dominated convergence this infimum is a minimum.

Prop. 2 (Subgaussian norm is indeed a norm)

‖ · ‖ψ2 is a norm on the space of subgaussian r.v.’s.

Proof.
Everything is simple, except for the triangle inequality which is not straightforward.

Finally, we have a last observation which

Prop. 3 (Subgaussian r.v.’s are a Banach space)

Let (Ω,F ,P) be a probability space, V = {X r.v subgaussian on Ω} and ‖ · ‖ψ2
as defined

above. Then, (V, ‖ · ‖ψ2) is a Banach space.

Since we have that the optimal constant for property 4. is given by the subgaussian norm ‖X‖ψ2
,

then we have the following updated set of inequalities in terms of k4 = ‖X‖2ψ2
:

1. P(|X| > t) ≤ 2e
− Ct2

‖X‖2
ψ2 for all t ≥ 0.

2. ‖X‖Lp ≤ C‖X‖ψ2

√
p for all p ≥ 1.

3. E[e
X2

‖X‖2
ψ2 ] ≤ 2.

4. If E[X] = 0, then E[eλX ] ≤ eCλ
2‖X‖2ψ2 .

Prop. 4 (Bounded r.v.’s are subgaussian)

If X is a bounded random variable then X is subgaussian.

Proof.

‖X‖ψ2
≤ ‖X‖∞

log 2
.

9



2.2 General Hoeffding’s inequality Lecture 2: Subgaussian random variables

Non-subgaussian r.v.’s Poisson, exponential, Pareto, Cauchy, . . .
For subgaussian random variables we have something similar to the property of Gaussian random
variables

Prop. 5 (Sums of subgaussians)

Let X1, . . . , XN be i.i.d subgaussian random variables with E[Xi] = 0 for all i. Then,
∑N
i=1Xi

is subgaussian and ∥∥∥ N∑
i=1

Xi

∥∥∥2
ψ2

≤ C
N∑
i=1

‖Xi‖2ψ2 .

Moreover, since ‖ · ‖2ψ2
is a norm, we also have the following bound for free:

∥∥∥ N∑
i=1

Xi

∥∥∥2
ψ2

≤ C
N∑
i=1

‖Xi‖ψ2 .

Proof.
Since E[Xi] = 0 then also E[

∑
iXi] = 0 and we use property 5. to show

E[eλ
∑
iXi ]

5.
≤
∏
i

eCλ
2‖Xi‖2ψ2

= eCλ
2 ∑

i ‖Xi‖
2
ψ2 .

Moreover, since the best constant is k4 we have the norm.

2.2 General Hoeffding’s inequality

Subgaussian random variables are extremely useful since we have a general form of the Hoeffding’s
inequality without passing through Rademacher or boundedness.

Theorem 9 (General Hoeffding’s inequality)

Let X1, . . . , XN be independent subgaussian random variables with E[Xi] = 0 for all i. Then,
for each t ≥ 0 we have a tail estimate

P
(∣∣ N∑

i=1

Xi

∣∣ ≥ t) ≤ 2 exp

(
− Ct2∑N

i=1 ‖Xi‖2ψ2

)
.

Proof.
Using the previous Prop. 5, we have that X :=

∑N
i=1Xi is a subgaussian r.v. and we can write

P(|X| > t) ≤ 2e
− Ct2

‖X‖2
ψ2 , for all t ≥ 0.

Using the bound on the norm given by Prop. 5 and taking for instance .

10



2.2 General Hoeffding’s inequality Lecture 2: Subgaussian random variables

Corollary 3 (General Hoeffding’s inequality 2)

Let X1, X2, . . . , Xn be independent subgaussian random variables with E[Xi] = 0, and let
a1, a2, . . . , an ∈ R. Then,

P
(∣∣ N∑

i=1

aiXi

∣∣ ≥ t) ≤ 2 exp

(
− ct2

k2‖a‖22

)
,

where k = maxi ‖Xi‖2ψ2
.

Proof.
Use again the same properties, recall the homogeneity property of the norm and then bound using
the maximum of the |ai|’s.

Note We can also apply the theorem to general X1, . . . , XN independent and subgaussian but we
need to replace Xi by Xi − E[Xi] beforehand.

Recall that ‖X − E[X]‖L2 ≤ ‖X‖L2 . This does not hold for the subgaussian norm, however we do
have a lemma in this direction.

Lemma 1 (Centering of a subgaussian r.v.)

Let X be subgaussian, then X − E[X] is subgaussian (vector space) and

‖X − E[X]‖ψ2
≤ C‖X‖ψ2

.

Proof.
‖ · ‖ψ2

is a norm, therefore

‖X − E[X]‖ψ2 ≤ ‖X‖ψ2 + ‖E[X]‖ψ2

= ‖X‖ψ2
+ |E[X]| · ‖1‖ψ2

≤ ‖X‖ψ2
+ ‖X‖L1 · ‖1‖ψ2

(|E[X]| ≤ E[|X|] = ‖X‖L1)

≤ ‖X‖ψ2
+ C · ‖X‖ψ2

·
√

1 · ‖1‖ψ2
(using 2.)

≤ K‖X‖ψ2
.

11
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Lecture 3: Geometry of random vectors
2021-11-21

If we consider a Gaussian distribution, X ∼ N (0, 1), then we might be interested in the length of
‖X‖22. However, X2 ∼ χ2

1 but this is not a subgaussian distribution:

P(X2 > t) = P(|X| >
√
t) ≥ C

(
1

t1/2
− 1

t3/2

)
1√
2π
e−t/2 �≤ 2e−t

2/k21 ,

which violates the lower bound 1. of the subgaussian random variable.

3.1 Subexponential random variables

We start with a characterization of a set of properties:

Theorem 10 (Equivalence of properties for subexponential r.v.’s)

Let X be a generic random variable, then the following properties are equivalent:

1. (Tail of X) There exists a k1 > 0 such that P(|X| > t) ≤ 2e−t/k1 for all t ≥ 0.

2. (Moments of X) There exists a k2 > 0 such that ‖X‖Lp ≤ k2p for all p ≥ 1.

3. (Mgf of |X|) There exists a k3 > 0 such that E[eλ|X|] ≤ ek3λ for |λ| ≤ 1
k3
.

4. (Mgf of |X|) There exists a k4 > 0 such that E[e|X|/k4 ] ≤ 2.

In addition, if E[X] = 0 we can add another equivalent property:

5. (Mfg of X) There exists a k5 > 0 such that E[eλX ] ≤ ek5λ2

for all |λ| ≤ 1
k5
.

Moreover, the above constants k1, . . . , k5 differ by a constant factor, i.e. if one property holds
then all properties hold and ∃Cij > 0 such that

ki ≤ Cijkj for all i, j, with a Cij that does not depend on X.

Remark Property 5. changes in condition since the mgf might not exist for all λ ∈ R.

Def. (Subexponential r.v.’s)

A random variable X satisfying one (and therefore all) of the above properties is called
subexponential.

Def. (Subexponential norm)

Given X subexponential r.v., we define the subexponential norm as

‖X‖ψ1 = inf{t > 0 : E[e|X|/t] ≤ 2}.

Prop. 6

The set of subexponential random variables equipped with the ‖ ·‖ψ1 norm is a Banach space.

12



3.1 Subexponential random variables Lecture 3: Geometry of random vectors

Example (Subgaussian =⇒ subexponential)

Any subgaussian random variable is also subexponential, for example take any property
above in theorem 10 and check it.

Example (Exponential)

The exponential r.v. is subexponential, indeed

X ∼ Exp(γ) =⇒ P(X ≥ t) = e−γt

Example (Poisson)

The Poisson r.v. is subexponential, since

X ∼ Pois(γ) =⇒ E[eλX ] = eγeγe
λ

≤ ek5λ.

There is a deep connection between subexponential and subgaussian random variables, summarized
by the following lemma.

Lemma 2 (Subgaussian square is subxeponential)

A r.v. X is subgaussian ⇐⇒ X2 is subexponential, moreover

‖X2‖ψ1
= ‖X‖2ψ2

Proof.
If we consider the subexponential norm, we have

‖X2‖ψ1
= inf{t > 0 : E[eX

2/t] ≤ 2}

= inf{k2 > 0 : E[eX
2/k2 ] ≤ 2}.

Lemma 3 (Product of subgaussians)

Let X,Y be subgaussian r.v.’s not necessarily independent, then X · Y is subexponential and

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
.

Proof.
Without loss of generality we take ‖X‖ψ2 = ‖Y ‖ψ2 = 1 (by bilinearity), then we have to prove that

‖XY ‖ψ1 ≤ 1.

Equivalently, we have ‖X‖ψ2
= 1 = ‖Y ‖ψ2

that implies

E[eX
2

] ≤ 2, E[eY
2

] ≤ 2,

13
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we want to prove that
E[e|XY |] ≤ 2.

We use the fact that ab ≤ a2+b2

2 by Young’s inequality, therefore

|XY | ≤ X2

2
+
Y 2

2
,

E[e|XY |]
Y.
≤ E[e

X2

2 e
Y 2

2 ]
Y.
≤ E[eX

2

]

2
+

E[eY
2

]

2
≤ 2

2
+

2

2
= 2.

Prop. 7 (Centering)

There exists a C > 0 such that for all X subexponential,

‖X − E[X]‖ψ1 ≤ C‖X‖ψ1

Proof.
Analogous to subgaussian.

We consider now an inequality for subexponential random variables, which implies a part on sub-
gaussian random variables.

Remark Consider a bounded r.v. X, then its moment-generating function is

E[eλX ]
λ≈0
≈ E[1 + λX +

λ2

2
X2 + o(λ2X2)]

= 1 +
λ2

2
E[X2] + o(λ2)

≈ eλ
2

2 E[X2]

This property is very similar to property 5. of subexponential and subgaussian random variables.

Theorem 11 (Bernstein’s inequality)

Let X1, X2, . . . , Xn be independent, mean-zero subexponential r.v.’s. Then, for all t > 0 we
have

P
(∣∣ N∑

i=1

Xi

∣∣ ≥ t) ≤ 2 exp

(
−c ·min

{ t2∑N
i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

})
.

14
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Proof.
We use property 5. to write

P(S ≥ t) ≤ e−λt
N∏
i=1

E[eλXi ]

5.
≤ e−λt

N∏
i=1

eCλ
2‖Xi‖2ψ1 (for |λ| ≤ C

‖Xi‖ψ1

)

≤ e−λt+Cλ
2 ∑

i ‖Xi‖
2
ψ1

Now, if in the worst case λ̂ = C
‖Xi‖ψ1

is to the right of the minimum of the parabola, we have to take
it instead of minimizing the parabola.

λopt =


t

2C
∑
i ‖Xi‖2ψ1

if λ̂ ≥ t
2C

∑
i ‖Xi‖ψ1

λ̂ if 0 < λ̂ < . . .

Replacing Xi with aiXi in Bernstein’s inequality above, we get the more general bound.

Theorem 12 (Bernstein’s inequality for weighted sums)

Let X1, X2, . . . , Xn be independent, mean-zero subexponential r.v.’s. Then, for all t > 0 we
have

P
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t) ≤ 2 exp

(
−c ·min

{ t2

K2‖a‖22
,

t

K‖a‖∞

})
,

where K = maxi ‖Xi‖ψ1
.

Corollary 4 (Special case of Bernstein’s inequality)

Choosing ai = 1
N in theorem 12 we have a quantitative law of large numbers for subexponen-

tial random variables,

P
(∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣ ≥ t) ≤ 2 exp

{
−cN ·min

{ t2

K2
,
t

K

}}
,

where K = maxi ‖Xi‖ψ1
.

Remark If we have subexponential random variables with mean zero, then we can avoid using K
and simply write the following two-regime inequality by replacing t with t/

√
N ,

P
(∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣ ≥ t) ≤
2 exp

(
−ct2

)
if t ≤ C

√
N small deviations

2 exp
(
−t
√
N
)

if t ≥ C
√
N large deviations

where C and c can depend on ‖X‖ψ1
, but does not if they are i.i.d random variables.

15
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3.2 Random vectors in high dimensions

Theorem 13 (Concentration of the norm)

Let X ∈ Rn be a random vector with independent subgaussian coordinates Xi such that
E[X2

i ] = 1. Then, ∥∥‖X‖2 −√n∥∥ψ2
≤ Ck2, (2)

where k = maxi ‖Xi‖ψ2 .

Proof.
We can apply Bernstein inequality to see that by centering X2

i ,

‖X2
i − 1‖ψ1

center.
≤ C‖X2

i ‖ψ1
= C‖Xi‖2ψ2

≤ CK2,

and therefore

P
(

1

n
‖X‖22 − 1 ≥ u

)
=

1

n

n∑
i=1

(X2
i − 1)︸ ︷︷ ︸

subexp

Cor.4
≤ ≤ 2 exp

(
−c · n ·min

{ u

C2K
,

u

CK2

})
.

Now, since K ≥ 1 we have that K4 ≥ K2 and by renaming the absolute constants,

P
(

1

n
‖X‖22 − 1 ≥ u

)
= 2 exp

(
−cn
k4
·min

{
u2, u

})
.

Trick If we take z ≥ 0 and δ ≥ 0, then a trivial trick yields

|z − 1| ≥ δ =⇒ |z2 − 1| ≥ max
{
δ, δ2

}
. . .

Remark E[‖X‖22] = E[
∑
iX

2
i ] = n so it’s not surprising to see

√
n above.

Equivalent Recall by the properties that

(2) ⇐⇒ P
(∣∣∣‖X‖2 −√n∣∣∣ ≥ t) ≤ 2 exp

(
−−ct

2

k4

)
, for all t ≥ 0.

What is surprising is that t does not depend on n, i.e. we can find a bound independent of n such
that √

n− t0 ≤ ‖X‖2 ≤
√
n+ t0.

16
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Figure 1: errorOfOrderOneSquareRoot

Consequences As an exercise, we have
√
n− CK2 ≤ E[‖X‖2] ≤

√
n+ CK2

V[‖X‖2] ≤ CK4

Def. (Covariance matrix)

Let X be random vector in Rn with E[X] = µ, then the covariance matrix of X is

Cov(X) = E[(X − µ)(X − µ)>] = E[XX>]− µµ>,

where Cov(X)ij = Cov(Xi, Xj).

Def. (2nd-moment)

The second-moment matrix of X is

Σ(X) = E[XX>],

where Σij = E[XiXj ].

Remark If E[X] = 0, then Cov(X) = Σ(X). For all X random vectors, Cov(X) and Σ(X) are
symmetric positive semidefinite matrices.

17
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Lecture 4: Concentration of measure
2021-11-22

Def. (Isotropy)

A random vector X ∈ Rn is called isotropic if

Σ(X) = E[XX>] = 1n.

Reduction to isotropy

a) Let Z be an isotropic mean-zero r.v. in Rn, fix µ ∈ Rn and Σ ∈Mn×n(R), Σ ≥ 0 then

X := µ+ Σ1/2Z

has mean µ and Cov(X) = Σ.

b) If X is a r.v. then Z := Σ−1/2(x− µ) is an isotropic mean-zero r.v.

Lemma 4 (Characterization of isotropy)

A random vector X ∈ Rn is isotropic if and only if

E[〈X,x〉2] = ‖x‖22, ∀x ∈ Rn, (1)

where 〈·, ·〉 is the scalar product in Rd.

Proof.
LHS of (1) is

E
[(∑

i

Xixi

)(∑
j

Xjxj

)]
=
∑
i

∑
j

xixjE[XiXj ].

Since
∑
i x

2
i = ‖x‖22, we have (1) ⇐⇒ E[XiXj ] = δij , therefore ⇐⇒ X is isotropic.

Lemma 5 (Norm of isotropic r.v.’s)

Let X be an isotropic r.v. in Rn, then E[‖X‖22] = n. Moreover, if X and Y are independent
isotropic r.v.’s in Rn, then E[〈X,Y 〉2] = n.

Proof.
For the first equality, we have

E[‖X‖22] = E[

1×1︷ ︸︸ ︷
X>X]

= E[trXX>] (cyclic)

= trE[XX>] (linearity)

= tr In (isotropy)

= n.

18



Lecture 4: Concentration of measure

Order of magnitude if we define X = X
‖X‖2 and Y = Y

‖Y ‖2 with X ⊥⊥ Y isotropic, then we have
that 

‖X‖2 ∼
√
n

‖Y ‖2 ∼
√
n

|〈X,Y 〉| ∼
√
n

and therefore ∣∣〈X,Y 〉∣∣ =
|〈X,Y 〉|
‖X‖‖Y ‖

∼
√
n√

n
√
n
∼ 1√

n
.

Example (Standard multivariate Gaussian)

Let X = (X1, X2, . . . , Xn) with Xi
iid∼ N (0, 1), then X ∼ N (0, In) and In = Cov(X). Hence,

X is an isotropic random vector. Recall theorem 13, then the norm of X has concentration
bound

P
(∣∣‖X‖2 −√n∣∣ ≥ t) ≤ 2e−

ct2

k4 .

We can apply the concentration of the norm to the standard Gaussian vector X ∼ N (0, In)

using another universal constant to include ‖Z‖ψ2
since they are i.i.d marginals,

X ∼ N (0, In) =⇒ P
(∣∣‖X‖2 −√n ≥ t∣∣) ≤ 2e−Ct

2

.

Link between Gaussian distribution and Hausdorff measure on Sn−1.

Figure 2: Gaussian point cloud in two dimensions and its visualization in high dimen-
sions. The standard normal distribution is very close to a Unif(

√
nSn−1) distribution

on the sphere of radius
√
n.

Theorem 14 (Cramér-Wald)

If X,Y are random vectors in Rn and 〈X,ϑ〉 d
= 〈Y, ϑ〉 for all ϑ ∈ Rn, then X d

= Y

Proof.
No.
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Def. (Subgaussian random vector)

A random vector X ∈ Rn is called subgaussian if the one-dimensional marginals 〈X,ϑ〉 are
subgaussian random variables for all ϑ ∈ Rn.

Def. (Subgaussian norm of random vectors)

The subgaussian norm of a subgaussian random vector X is defined as

‖X‖ψ2
= sup
ϑ∈Sn−1

‖〈ϑ,X〉‖ψ2
.

Prop. 8 (Subgaussian marginals)

X ∈ Rn is a subgaussian random vector if and only if X1, . . . , Xn are subgaussian random
variables.

Lemma 6 (Bound on the subgaussian norm)

Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent, mean-zero and subgaussian
coordinates. Then, X is a subgaussian random vector and

‖X‖ψ2
≤ C max

1≤i≤n
‖Xi‖ψ2

.

Prop. 9 (Sum of subgaussian vectors)

Let X1, . . . , Xn be independent mean-zero subgaussian random vectors. Then Z =
∑n
i=1Xi

is a subgaussian random vector and

‖
∑
i

Xi‖2ψ2
≤ C

N∑
i=1

‖Xi‖2ψ2
.

Example (Examples of subgaussian random vectors)

Theorem 15 (Uniform distribution on a sphere)

Let X ∼ Unif(
√
nSn−1), then X is subgaussian and

‖X‖ψ2 ≤ C.

Proof.
TODO
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