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Lecture 1: Introduction to measure theory

Lecture 1: Introduction to measure theory
2021-10-19

The course contents will be mostly on measure theory with some basic functional analysis notions
about Banach and Hilbert spaces.

1.1 Measure spaces

Def. (σ-algebra)

Let X be an arbitrary set and Σ be a collection of subsets of X. Σ is called a σ-algebra if
it is closed w.r. to complement and countable unions:

i A ∈ Σ =⇒ Ac = X \A ∈ Σ.

ii A1, A2, . . . ∈ Σ =⇒
⋃
n∈NAi ∈ Σ.

Remark The smallest σ-algebra is {∅, X}, whereas the biggest possible σ-algebra is the family of
all subsets of X, P(X) = {A : A ⊆ X}.

Remark In principle we need to consider σ-algebras which are strictly smaller than P(X), since
a coherent definition of measure is very difficult to define on it.

Def. (σ-algebra generated by a set)

If C ⊆ P(X) is a family of subsets of X, then the σ-algebra generated by C is the
smallest σ-algebra on X which contains C,

σ(C) =
⋂

i:C⊆F

F , F is a σ-algebra of X.

Example (Borel σ-algebra)

If we consider X = R, then the Borelian σ-algebra B is the σ-algebra generated by all open
intervals (a, b), a, b ∈ R. That is, if C = {(a, b) : a < b, a, b ∈ R}, then

B = σ(C).

In any set X where we can define a topology, that is, a notion of open and closed sets, we can also
define its associated Borel σ-algebra as the smallest σ-algebra that contains all open sets.

Under the above-defined σ-algebra, all intervals of the form

[a, b], [a, b), (a, b], (a,∞), [a,∞), (−∞, b], (−∞, b)
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1.1 Measure spaces Lecture 1: Introduction to measure theory

are all contained in B. This is easy to prove by using the property of closeness w.r. to countable
unions and complements. For instance,

(a,+∞) =

∞⋃
i=1

(a, a+ i) ∈ B

R \ (a,+∞) = (−∞, a] ∈ B.

Moreover, B can be equivalently defined as the σ-algebra generated by the following sets:

σ
(
{(a, b) : a < b}

)
σ
(
{(a, b] : a < b}

)
σ
(
{[a, b] : a < b}

)
σ
(
{[a, b) : a < b}

)
Remark The obvious question is: why would we need a notion of Borel σ-algebra when defining
a measure on R (and, by extension, on Rd)? The reason is that we can construct some subsets A of
R such that A 6∈ B, for example the Vitali set. On those pathological sets it is not possible to define
a function such that it follows the properties that we expect from a measure.

Def. (Measure)

Let (X,Σ) be a measurable space, then we say that a function µ : Σ→ [0,+∞] is ameasure
if µ is such that

› µ(∅) = 0

› (σ-additivity): ∀Ai ∈ Σ, Ai ∩Aj = ∅, then µ
(⋃∞

i=1Ai
)

=
∑∞
i=1 µ(Ai).

In this case we say that the triple (X,Σ, µ) is a measure space.

Finiteness If µ is such that it assigns finite mass to X, i.e. µ(X) <∞, then µ is said to be a finite
measure. A finite measure with µ(X) = 1 is called a probability measure.

σ-finiteness If X can be written as a countable union of sets, X =
⋃∞
i=1Ai such that µ(Ai) <∞

for all i, then µ is σ-finite.

General properties of a measure Given a measure space (X,Σ, µ), we can prove some general
properties starting from the definition of µ:

a) (Monotonicity): if A,B ∈ Σ are such that A ⊆ B, then µ(A) ≤ µ(B).

b) (σ-subadditivity): if (Ai)i∈N is a sequence of elements of Σ, then

µ
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai).
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1.2 Characterization of Borel measures Lecture 1: Introduction to measure theory

c) (Continuity): if (Ai)i∈N is a monotone increasing sequence of elements of Σ such that
A1 ⊆ A2 ⊆ A3 ⊆ . . ., then

µ
( ∞⋃
i=1

Ai

)
= lim
i→∞

µ(Ai).

d) If Ai+1 ⊆ Ai at each i we have

µ
(⋂
i

Ai
)

= lim
i→∞

µ(Ai).

e) (Continuity ii): if (Ai)i∈N is a monotone decreasing sequence of elements of Σ such that
Ai+1 ⊆ Ai and µ(Ai0) <∞ for some i0, then

µ
( ∞⋂
i=1

Ai

)
= lim
i→∞

µ(Ai).

1.2 Characterization of Borel measures

We try to characterize all measures on the Borel σ-algebra of R, which are called Borel measures.
To do so, let F : R −→ R be an increasing function which is right-continuous, that is

lim
x→a+

F (x) = F (a).

Def. (Measure induced by F)

Let F be a function defined as above, we define the measure induced by F as the function
µF such that for a set (a, b] we have

µF (a, b] = F (b)− F (a).

For simplicity we define µF (∅) = 0.

σ-additivity When restricted to C = {(a, b] : a < b} the measure µF is non-negative, additive,
continuous w.r. to increasing sequences of sets. Therefore, we have that µF is also σ-additive on the
σ-algebra B.

Example (Measure of some particular sets)

We note that for some particular choices of sets,

µF (R) = µF
(⋃
n

(a− n, b+ n)
)

= sup
x
F (x)− inf

x
F (x)

µF ({a}) = µF (c, a]− µF (c, a) = F (a)− lim
x→a−

F (x)

To complete the characterization of Borel measures we have the following theorem, which roughly
states that defining a measure on B can be done simply by defining a measure on C.
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1.3 Decomposition of measures Lecture 1: Introduction to measure theory

Theorem 1 (Carathéodory existence theorem)

Let (X,B) be a measurable space with Borel σ-algebra B. Then,

i. There exists a unique Borel measure µF which coincides with µF on the intervals (a, b]

and is σ-finite ⇐⇒ supx F (x)− infx F (x) <∞.

ii. Given a Borel measure µ on R there exists a monotone increasing and right-continuous
function F defined as

F (x) =

µ(0, x] if x > 0

−µ(x, 0] if x < 0

such that µ is equal to the measure induced by F ,

µ = µF .

Proof.
No.

We now have the following relationship, which completely characterizes the Borel measures on R.

Increasing right-continuous F ⇐⇒ Borel measure µF on R

From this result we can now define the usual notion of measure (i.e. size) of sets in R, which will be
the building block for the formalization of the notion of integration over general measure spaces.

Def. (Lebesgue measure)

Let F (x) = x for all x ∈ R, then if we define µF = µ(a, b] = b− a µF its completion via the
Carathéodory is called the Lebesgue measure on R and we indicate it by L.

Properties of the Lebesgue measure

i.

ii.

iii.

iv.

v.

1.3 Decomposition of measures

Before introducing the Lebesgue integral, we now describe a useful characterization of the rela-
tionship between measures, which is useful to generalize the notion of a random variable from the
dichotomy discrete/continuous to a more fundamental description.
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1.3 Decomposition of measures Lecture 1: Introduction to measure theory

Def. (Absolutely continuous measure)

Let ν, µ be measures defined on (X,Σ), then we say that ν is absolutely continuous with
respect to µ and we write ν � µ if for every A ∈ Σ it holds that

µ(A) = 0 =⇒ ν(A) = 0.

Prop. 1 (Absolutely continuous measure induced by a density)

Let f ≥ 0 be a measurable function such that for all m > 0,
∫m
−m f(x) dx < ∞. Then, the

function νf defined as

νf (A) =

∫
A

f(x) dx

is a measure on (Rn,M) which is both σ-finite and absolutely continuous w.r. to L. if
f ∈ L1(Rn), then the measure is also finite.

Def. (Singular measure)

Let ν, µ be measures defined on (X,Σ), then we say that ν is singular with respect to µ
and we write ν ⊥ µ if there exist A,B ∈ Σ such that

A ∩B = ∅ (disjoint)

A ∪B = X (partition)

ν(A) = 0 = µ(B) (measures are orthogonal)

Example (Dirac measure is singular)

Consider the Dirac measure δx0 centered on a point x0, then we can write

R =
(
R \ {x0}︸ ︷︷ ︸

A

∪{x0}︸︷︷︸
B

)
,

and we have that L(B) = 0 = δx0(A).

We now state a fundamental theorem which completely characterizes the relationship of continuity
and singularity between two measures.

Theorem 2 (Lebesgue decomposition)

Let ν, µ be two σ-finite measures on a measurable space (X,Σ), then there exist two unique
measures η (absolutely continuous part) and ρ (singular part) such that

ν = η + ρ,

η � µ,

ρ ⊥ µ.
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Lecture 2: Lebesgue integration
2021-10-26

We are now ready to define the notion of Lebesgue integration, which greatly extends integrability
beyond the simpler Riemann integral.

2.1 Measurable functions

Def. (Measurable function)

Let (X,Σ) and (Y, E) be two measurable spaces and let f : X −→ Y be a function. We say
that f is measurable with respect to E and Σ if for all E ∈ E we have that

f−1(E) ∈ Σ.

Equivalent property For the special case of f : X → R we are interested in the following
equivalent condition:

f−1(t,+∞) = {x ∈ X : f(x) > t} is measurable.

Starting from the notion of measurable function, we are now ready to define what it means for a
sequence of functions to converge.

Def. (Convergence in measure)

Let (fn)n∈N be a sequence of measurable functions and f be a measurable function, all
defined on the measure space (X,Σ, µ). Then, fn converge to f in measure if for every
ε > 0 we have

lim
n→∞

µ
(
{x ∈ X : |fn(x)− f(x)| ≥ ε}

)
= 0.

Convergence in probability If (Ω,F ,P) is a probability space, this convergence is called con-
vergence in probability since it reads

lim
n→∞

P
(
{ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}

)
= 0.

2.2 Lebesgue integration

Both the definition of Lebesgue integration and the discussion of its properties are always developed
in three stages. First, the definition of some property that holds for a simple class of functions; second,
the simple functions are used to approximate some positive measurable function f of interest; finally,
we can extend the property to any measurable function f by considering it as a sum of its positive
and negative parts, f+ and f−.

Def. (Simple function)

Let A1, A2, . . . , AK be a finite family of disjoint sets and c1, c2, . . . , cK > 0 positive constants.
We say that ϕ is a simple function if

ϕ(x) =

K∑
i=1

xi1Ai
(x).

6



2.2 Lebesgue integration Lecture 2: Lebesgue integration

Measurability of ϕ A simple function ϕ is a step function with a finite number of jumps, which
can be immediately proven to be measurable: for a single indicator function,

t ≥ 1 −→ {x : 1A(x) > t} = ∅ ∈ B

t < 1 −→ {x : 1A(x) > t} = A ∈ B.

Then, for a simple function as defined above we can extend this argument by considering the
indicator function of the union

⋃K
i=1Ai.

When considering a simple function we can give an intuitive definition of the Lebesgue integral,
which represents the total area under the graph of the function.

Def. (Lebesgue integral of a simple function)

Let ϕ(x) =
∑K
i=1 ci1Ai

(x), then we define the Lebesgue integral of ϕ as the linear func-
tional ∫

RN

ϕ(x) dx =

K∑
i=1

ciL(Ai).

For a general measurable function f , we can extend the notion of the Lebesgue integral by approx-
imating it from below with simple functions and taking the best approximation over all possible
simple functions.

Def. (Lebesgue integral of a positive function)

Let f : Rn −→ R be a measurable function such that f(x) ≥ 0, then we define its Lebesgue
integral as ∫

Rn

f(x) dx = sup
{∫

Rn

ϕ(x) dx : ϕ simple function and ϕ < f
}
.

In the general case where f is not positive we define instead the integral in terms of its positive and
negative parts, when such an operation is well-defined.

Def. (Lebesgue integral of a function)

Let f : Rn −→ R be a measurable function, possibly negative. Let now its positive part be
f+(x) = max{0, f(x)} and its negative part be f−(x) = max{0,−f(x)}. Then, we define
the Lebesgue integral of f as∫

Rn

f(x) dx =

∫
Rn

f(x)+ dx−
∫
Rn

f(x)− dx,

whenever this subtraction is well-defined.

Properties of the Lebesgue integral

› If f = 0 almost everywhere, then
∫
Rn f(x) dx = 0. Conversely, if f ≥ 0 is measurable and∫

Rn f(x) dx = 0 then f = 0 almost everywhere.

7



2.2 Lebesgue integration Lecture 2: Lebesgue integration

› If f and g are measurable functions such that f = g almost everywhere, then∫
Rn f(x) dx =

∫
Rn g(x) dx

› If f, g ∈ L1(Rn), i.e. are absolutely integrable, then∫
Rn

(
αf(x) + βg(x)

)
dx = α

∫
Rn

f(x) dx+ β

∫
Rn

g(x) dx.

› If f, g ∈ L1(Rn) and f ≤ g almost everywhere, then∫
Rn

f(x) dx ≤
∫
Rn

g(x) dx.

This definition of the integral is especially useful when dealing with sequences of functions for which
we want to establish some sort of convergence of integrals.

Theorem 3 (Monotone convergence)

Let fk : Rn → R be a sequence of measurable functions such that fk ≥ 0 and fk(x) ≤ fk+1(x)

for all x and for all k, then

lim
k→∞

∫
Rn

fk(x) dx =

∫
Rn

lim
k→∞

fk(x) dx.

Proof.
No.

Prop. 2 (Repartition function)

Let f : Rn → R be a measurable positive function, and let for every t > 0 F (t) be the
repartition function of f ,

F (t) = L{x : f(x) > t}.

Then, it holds that ∫
Rn

f(x) dx =

∫ ∞
0

F (t) dt.

Proof.
No.
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Lecture 3: Banach spaces
2021-11-09

We start by defining some useful spaces in functional analysis, namely Lp and Mp spaces.

3.1 Lp spaces

Def. (Lp spaces)

For p ∈ [1,∞) we define the following vectorial space

Lp(A) =
{
f : Rn → R : f is measurable and

∫
A

|f(x)|p dx <∞
}
.

For p =∞, we define

L∞(A) =
{
f : Rn → R : f is measurable and |f(x)| ≤ c for almost every x ∈ A

}
.

Def. (Mp spaces)

When we consider A = Ω, we have the space of random variables with finite pth moment,

Mp =
{
X : Ω→ R : X is measurable and E[|X|p] <∞

}
,

with an analogous definition for p =∞,

M∞ =
{
X : Ω→ R : X is measurable and |X(ω)| ≤ c for almost every ω ∈ Ω

}
.

Convergence With these definitions, it’s immediate to define a notion of convergence in terms of
p spaces for general functions (Lp) and for random variables (Mp):

› convergence in p-space for a sequence of functions (fn)n∈N,

fn
Lp

−−→ f ⇐⇒
∫
R
|fn(x)− f(x)|p dx

n→∞−−−−→ 0,

› convergence in p-mean for a sequence of random variables (Xn)n∈N

Xn
Lp

−−→ X ⇐⇒ E[|Xn −X|p]
n→∞−−−−→ 0.

These spaces are particularly important for functional analysis since they are examples of Banach
spaces, whose structure we are going to study more generally.

We now state some inequalities which are useful for studying Lp and Mp spaces in their generality.
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3.2 Banach spaces Lecture 3: Banach spaces

Def. (Conjugate exponent)

Let p > 1, then the conjugate exponent of p is q > 1 such that

1

p
+

1

q
= 1 ⇐⇒ q =

p

p− 1
.

Moreover, if p = 1 we say that its conjugate exponent is q = +∞ and vice versa.

Theorem 4 (Young’s inequality)

Let p, q be conjugate exponents, then for all x, y > 0 we have that

xy ≤ xp

p
+
yq

q
.

Remark This property is a generalization of the classic identity (a− b)2 > 0 =⇒ ab < a2

2 + b2

2 .

Theorem 5 (Hölder’s inequality)

Let p, q ∈ [1,∞] be conjugate exponents, i.e. 1
p + 1

q = 1, then for all measurable functions f
on O ⊆ Rn we have

‖fg‖1 ≤ ‖f‖p‖g‖q,

which if expanded becomes∫
O

|f(x)g(x)| dx ≤
(∫

O

|f(x)|p
) 1

p
(∫

O

|g(x)|q
) 1

q

.

Moreover, if f, g ∈ Lp(O) then fg ∈ L1(O) and this becomes an equality ⇐⇒ |f |p and |g|q

are linearly dependent in L1(O).

Corollary 1 (Minkowski’s inequality)

Let f, g ∈ Lp(O), then we have that ‖ · ‖p satisfies the triangle inequality, i.e.

‖f + g‖p ≤ ‖f‖p + ‖g‖p,

which if expanded becomes(∫
O

|f(x) + g(x)|p
) 1

p ≤
(∫

O

|f(x)|p
) 1

p

+
(∫

O

|g(x)|p
) 1

p

.

‖ · ‖p is a norm This corollary states that ‖ · ‖p is indeed a norm on Lp, which is therefore a
normed vector space.

10



3.2 Banach spaces Lecture 3: Banach spaces

3.2 Banach spaces

Def. (Distance induced by a norm)

Let (X, ‖ · ‖) be a normed vectorial space, then we say that the distance induced by the
norm ‖ · ‖ is the function

d(x, y) = ‖x− y‖, x, y ∈ X.

Distance d(·, ·) as defined above is indeed a distance between two elements of X.

Topology This distance lets us define an induced topology on X – i.e. a notion of open and closed
sets – firstly by defining the balls of radius r centered in x0 as

B(x0, r) = {x ∈ X : d(x0, x) < r} ,

and then defining a set A ⊆ X as open if for all x ∈ A there exists r > 0 such that B(x, r) ⊂ A.

Def. (Banach space)

Let (xn)n∈N be a Cauchy sequence, i.e. for all ε > 0 there exists a N ∈ N such that
‖xn − xm‖ < ε for all n,m > N . If all such sequences have limit in X, then X is called a
Banach space.

Completeness This property is called completeness, and the definition states that “a Banach
space is a complete normed vector space”.

Theorem 6 (Lp are Banach spaces)

The spaces Lp(R), p ∈ [1,∞] are Banach spaces w.r. to the distance induced by the norm

‖f‖p =
(∫

R
|f(x)|p dx

) 1
p

, p ∈ [1,∞),

and
‖f‖∞ = sup

x
|f(x)|.

Mp spaces The theorem can be stated in terms of Mp being Banach spaces, when endowed with
the norms

‖X‖p = E[|X|p]
1
p , p ∈ [1,∞),

‖X‖∞ = sup
ω
|X(ω)|, p =∞.

Proof.

11
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Lecture 4: Lp spaces and bounded linear operators
2021-11-10

Recall that
Mp = {X : Ω→ R, such that E[|Xp|] <∞}

Lp = {f : R→ R, such that
∫
R
|f(x)|p dx <∞}

These are actually the same spaces if you consider Mp = Lp(Ω), indeed you can see that the Lp

norm of X is equal to

E[|X|p] =

∫
Ω

|x|p dP(ω)

Prop. 3 (Lp spaces inclusion)

M1 ⊃M2 ⊃ . . ., and in general Mn ⊂Mk if n ≥ k. In particular, if X is a random variable
such that E[|X|k] <∞, then E[|X|n] <∞ for all n ≤ k.

Proof.
By Jensen’s inequality, if f : R −→ R convex ( =⇒ meas. and cont.) and X is a random variable,
then the random variable f(X) is such that

E[f(X)] ≥ f
(
E[X]

)
.

We fix n ≥ k ≥ 1 and X ∈ Mn =⇒ E[|X|n] < ∞. We want to prove that also X ∈ Mk: we
therefore fix f(x) = |x|nk , and we see that

n

k
≥ 1 =⇒ f is a convex function.

Applying Jensen’s inequality,
E[f(Y )] ≥ f

(
E[Y ]

)
we use the functions f and r.v. Y = |X|k to see thatf(Y ) =

(
|X|k

)n
k = |X|n

E[f(Y )] = E[|X|n] <∞ by assumption

and so we obtain ∞ > E[|X|n] ≥ E[|X|k]
n
k , by taking square roots we have

∞ > E[|X|n]
1
n ≥ E[|X|k]

1
k ,

from which we conclude that X ∈Mn =⇒ X ∈Mk for all 1 ≤ k ≤ n and moreover ‖X‖k ≤ ‖X‖n.

Finally, we observe that this implies a relationship w.r. to convergence for all 1 ≤ k ≤ n:

Xn
Mn−−→ X =⇒ Xn

Mk−−→ X for all 1 ≤ k ≤ n.

12



Lecture 4: Lp spaces and bounded linear operators

Lp spaces inclusion This proof is analogous when considering more general Lp(A) spaces such
that L(A) <∞, since Mp is a special case of a Lp space when choosing A = Ω. Another proof can
be obtained by applying Hölder’s inequality:

Proof.
Consider f ∈ Ln(A), we want to prove that f ∈ Lk(A) for 1 ≤ k ≤ n. Since f ∈ Ln(A),∫

R
|f(x)|n1A(x) dx <∞,

which means that f(x)1A(x) ∈ Ln(R). Moreover, its’ trivial to see that 1A(x) ∈ Lp(R) for all p if
L(A) <∞, since ∫

R
|1A(x)|p dx = L(A).

Now, let q = n
n−1 be the conjugate exponent of n, we have thatf1A ∈ Ln(R)

1A ∈ L
n

n−1 (R)

then by Hölder’s inequality, (f1A) · 1A ∈ L1(R) and we see that

‖f‖L1(A) =

∫
R
|f(x)|1A(x) dx ≤ ‖f‖Ln(A)

(∫
R
1A(x)

n
n−1 dx

)n−1
n

= ‖f‖Ln(A) ·
(
L(A)

)n−1
n

Therefore, we conclude that Ln(A) ⊆ L1(A) for any n ≥ 1. With a similar argument, by accurately
choosing the exponent k we also have that f ∈ Lk(A) for all 1 ≤ k ≤ n,

f ∈ Lk(A) ⇐⇒ |f |k ∈ L1(A).

We have that
|f |k ∈ Ln

k (A)
n

k
> 1

since
(
|f |k

)n
k = |f |n and by choosing the conjugate exponent of nk ,

q =
n
k

n
k − 1

Remark

› Recall that if L(A) = R then L(A) = ∞ and the inclusion relationship is not true, since we
proved before that L2(R) 6⊆ L1(R).

› This holds in general for random variables since they induce a bounded measure, P(Ω) = 1.

› We have that L∞(A) ⊆
⋂
k≥1 L

k(A) but it is not strictly equal to it.

13



4.1 Operators between Banach spaces Lecture 4: Lp spaces and bounded linear operators

We also have a way of computing the Lk norm in terms of the Ln norm:∫
A

|f |k dx ≤ ‖f‖knL(A)
n−k
n =⇒ ‖f‖k ≤ ‖f‖n · L(A)

n−k
nk .

4.1 Operators between Banach spaces

Since we are working with spaces whose elements are functions (or random variables), we need to
define a notion of functional, i.e. a transformation between two functions. The notion of a linear
functional generalizes the linear transformation of standard algebra.

Def. (Linear operator)

Let X,Y be Banach spaces, then we say that a function T : X −→ Y is a linear operator
if T maintains the vectorial structure, i.e.

T (αx1 + βx2) = αT (x1) + βT (x2) for all x1, x2 ∈ X and α1, α2 ∈ R.

Def. (Continuity)

We say that T : X → Y is a continuous operator if for every sequence xn ∈ X such that
xn → x ∈ X, then Txn → Tx, i.e. converging sequences are mapped in converging sequences.

Def. (Boundedness)

We say that T : X → Y is bounded if there exists a constant C > 0 such that

‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

Remark Differently from standard functions f : R→ R we don’t require the image to be bounded,
since such a condition turns out to be too restrictive for linear operators between Banach spaces.

Prop. 4 (Continuity implies boundedness)

If X,Y are Banach spaces and T : X −→ Y is a linear operator, then T is continuous if and
only if T is bounded.

Equivalence Because of this theorem, we will always talk about bounded operators instead of
continuous operators, since they are the same.

Proof.
Bounded =⇒ continuous : Let xn ∈ X such that xn

n→∞−−−−→ x ∈ X, which by definition means
that ‖xn − x‖X

n→∞−−−−→ 0. From this, we want to prove that Txn
n→∞−−−−→ Tx.

Since the operator is bounded, there exists a C such that for all x ∈ X

‖Tx‖Y ≤ C‖x‖X ,

14



4.1 Operators between Banach spaces Lecture 4: Lp spaces and bounded linear operators

and applying this to y = xn − x ∈ X we have

0 ≤ ‖T (xn − x)‖Y ≤ C‖xn − x‖X
n→∞−−−−→ 0,

and by linearity we have that ‖Txn − Tx‖Y → 0.

Continuous =⇒ bounded : We actually prove another fact which implies this property, i.e. T not
bounded =⇒ T not continuous, by constructing a sequence which is not converging under the map
T . Assume that T is not bounded, then for any C > 0 we can always find at least a point x ∈ X
such that

‖Tx‖Y > C‖x‖X ,

In particular, let C = n, then we can always find a xn ∈ X such that

‖Txn‖Y > n‖xn‖X for ‖xn‖X 6= 0

Consider now the sequence of points yn = xn

n‖xn‖X , for which we have that yn ∈ X since X is a
vectorial space. Then,

‖yn‖X =

∥∥∥∥ xn
n‖xn‖X

∥∥∥∥ norm.
=

1

n
.

In particular, this means that ‖yn − 0‖X = 1
n

n→∞−−−−→ 0 and if T is continuous, then we should see
that Tyn → T0 = 0 in Y since it is a linear operator. Now,

Tyn = T

(
xn

n‖xn‖X

)
lin.
=

1

n‖xn‖X
T (xn),

and
‖Tyn‖Y =

∥∥∥∥ 1

n‖xn‖X
T (xn)

∥∥∥∥
Y

lin.
=

1

n‖xn‖X
‖Txn‖Y

Hp.
>

1

n‖xn‖X
n‖xn‖X = 1,

therefore Tyn does not converge to 0 in Y and therefore we prove the desired property.

Theorem 7 (Space of linear operators)

Let X,Y be Banach spaces, then we have that the set of linear operators between X and Y ,

B(X,Y ) = {T : X → Y linear bounded operators},

is a Banach space with norm given by

‖T‖ = sup
‖X‖X≤1

‖Tx‖ lin.
= sup

x 6=0

‖Tx‖Y
‖x‖X

.

Proof.

› Vectorial space: B(X,Y ) is naturally a vectorial space, since αT + βS is a linear operator
defined by

(αT + βS)(x) := αT (x) + βS(x).

15



4.1 Operators between Banach spaces Lecture 4: Lp spaces and bounded linear operators

Moreover, if T, S are bounded then αT + βS is also bounded by

‖αTx+ βSx‖Y ≤ α‖Tx‖Y + β‖Sx‖Y ≤ |α| · C‖x‖X︸ ︷︷ ︸
T bounded

+ |β| ·D‖x‖X︸ ︷︷ ︸
S bounded

=
(
|α|C + |β|D

)
‖x‖X .

› Norm: ‖T‖ as defined in the theorem above is indeed a norm since it satisfies the three
properties,

1. ‖T‖ ≥ 0 for all T .

2. ‖αT‖ = sup
‖X‖X≤1

‖αTx‖ = |α| · sup
‖x‖≤1

‖Tx‖ = |α| · ‖T‖.

3. ‖T + S‖ = sup
‖x‖≤1

‖Tx+ Sx‖Y ≤ sup
‖x‖≤1

‖Tx‖Y + sup
‖x‖≤1

‖Sx‖Y .

› Completeness: We are not going to prove that B(X,Y ) is a complete space w.r. to convergence
induced by the norm, since it is a bit complex.

Another important result for linear bounded operators is the following, which is a theorem that can
be used as an intermediate step in the proof of the completeness of B(X,Y ).

Theorem 8 (Banach-Steinhaus)

If Tn is a sequence of bounded linear operators from X to Y and for every x ∈ X there exists
lim
n→∞

Tnx in Y then the operator defined by

Tx := lim
n→∞

Tnx

is a bounded linear operator.

Example (Linear bounded operators)

Consider for a fixed X ∈Mp and q = p
p−1 the operator defined by

T : Mq −→ R

Y 7−→ E[X · Y ].

We prove that for a fixed X, T is a linear bounded operator.

Linearity is immediate because of linearity of the E[·] operator. As for boundedness we have
to show that ∃C > 0 such that ‖Tx‖Y ≤ C‖x‖X , where X = Mq and Y = R. For all Y ∈Mq

we therefore want to check that

|E[X · Y ]|
?
≤ C · E[‖Y ‖q]

1
q .
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4.1 Operators between Banach spaces Lecture 4: Lp spaces and bounded linear operators

We can do so by applying Hölder’s inequality, which allows us to write

|E[X · Y ]|
Jens.
≤ E[|X · Y |]

Höld
≤ E[|X|p]

1
p︸ ︷︷ ︸

C

·E[|Y |q]
1
q ,

and the operator is bounded the constant C = E[|X|p]
1
p (recall that X is fixed).

Moreover, we can actually prove (exercise) that the norm of T is equal to

‖T‖ = E[|X|p]
1
p

Example (Set of matrix operators)

If we consider T : Rn → Rm, then the set of bounded linear operators is the set of operators
defined by the Mm×n(R) matrices,

x 7→ Tx = Ax, A ∈Mm×n(R).

Moreover, the norm ‖T‖ is connected to the norm of the matrix A.

Linear algebra From the example above, we can interpret the space B(X,Y ) as the infinite-
dimensional generalization of the space of matrices,

Space of m× n matrices Infinite dim.−−−−−−−−→ B(X,Y ),

and the results we are going to prove for infinite-dimensional linear operators are similar to those of
standard finite-dimensional vector spaces.
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Lecture 5: Hilbert spaces

Lecture 5: Hilbert spaces
2021-11-23

We now discuss Hilbert spaces, which are spaces where it is possible to define the notions of length
and orthogonality. With these definitions, we are able to work with the elements of the space geo-
metrically, as if they were vectors in Euclidean space.

5.1 Subspaces and spaces

Def. (Closed subspace)

X Banach space and V ⊆ X is a closed subspace of X if

1. V ⊆ X and V is a vectorial space.

2. If fn ∈ V for al n such that fn → f in X, then f ∈ V .

V contains all the limit points of its converging sequences.

Example (M2)

Let V = {X ∈M2 : E[X] = 0}.

1. V is a subspace of M2, indeed if X1, X2 ∈ V then also αX1 + βX2 ∈ V .

2. Check that every converging sequence in V we have a limit in V itself.

Xn
L2

−−→ X is such that E[Xn] = 0, since Xn ∈ V and E[(Xn −X)2]→ 0 since V ⊆ X.
We want to deduce that E[X] = 0.

E[|Xn −X|]
prop. 3

≤
√
E[(Xn −X)2],

therefore E[|Xn−X|]→ 0, but now apply the expected value operator to all members
of the following inequality to get convergence of Xn to X in V ,

−|Xn −X| ≤ Xn −X ≤ |Xn −X|

Def. (Hilbert space)

Let X be a Banach space, then X is a Hilbert space if on X it is also defined a scalar
product 〈·, ·〉 : X ×X −→ R.

Properties of a scalar product

1. Positive: 〈x, y〉 ≥ 0 for all x, y ∈ X.

2. Symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ E.

3. Bilinear : 〈ax, y〉 = a〈x, y〉 for all x, y ∈ E and a ∈ R..
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5.1 Subspaces and spaces Lecture 5: Hilbert spaces

Example (Scalar product on M2)

If we consider M2, then ‖X‖2 =
√

E[|X|2] and X · Y ∈ L1 by Hölder’s inequality. Is the
norm and the scalar product can be defined as

〈X,Y 〉 = E[X · Y ] ∈ R.

Attention In general when k 6= 2, X ∈Mk and Y ∈Mk ���=⇒ XY ∈M1.

Example (L2)

Analogously, for L2 we can define for f, g ∈ L2 since fg ∈ L1 the scalar product defined by

〈f, g〉 =

∫
R
f(x)g(x) dx.

Prop. 5 (Scalar product associated with a norm)

A norm ‖ · ‖ on a Banach space is associated with a scalar product 〈·, ·〉, i.e. 〈x, x〉 = ‖x‖2

⇐⇒ it satisfies the parallelogram identity,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, ∀x, y ∈ X.

Theorem 9 (Cauchy-Schwartz inequality)

Let x, y ∈ X, then |〈x, y〉| ≤ ‖x‖ · ‖y‖.

Proof.
Consider for a ∈ R the norm

‖x− ay‖2 = ‖x‖2 + a2‖y‖2 − 2a〈x, y〉,

and this is a parabola in a. Minimizing in a and substituting the minimum yields the required
inequality.

Theorem 10 (Bicontinuity of 〈·, ·〉)
Let (xn)n and (yn)n be sequences in a Hilbert space H such that xn

n→∞−−−−→ x and yn
n→∞−−−−→ y.

Then,
lim

m,n→∞
〈xn, ym〉 = 〈x, y〉.
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5.2 Orthogonality Lecture 5: Hilbert spaces

Proof.
Consider h1, h2 ∈ H and the scalar product

|〈x+ h1, y + h2〉 − 〈x, y〉|
bilin.
= |〈x, h2〉+ 〈h1, y〉+ 〈h1, h2〉|

≤ ‖x‖‖h2‖+ ‖h1‖‖y‖+ ‖h1‖‖h2‖ (Cauchy-Schwarz)

h1,h2→0−−−−−−→ 0.

5.2 Orthogonality

With Hilbert spaces we can now define a notion of orthogonality between vectors x, y ∈ H.

Def. (Orthogonality)

x, y ∈ H are orthogonal if 〈x, y〉 = 0.

Example (L2(−1, 1))
Consider L2(−1, 1) = {f : R→ R such that

∫ 1

−1
|f(x)|2 dx <∞}.

The functions f(x) = sinx and g(x) = 1 are orthogonal, since

〈f, g〉 =

∫ 1

−1

sinx dx = 0.

Def. (Orthogonal complement)

Let S ⊆ H, we define the orthogonal complement S⊥ of S as the set of orthogonal
elements to S,

S⊥ = {h ∈ H : 〈h, s〉 = 0, ∀s ∈ S} .

Subspace The orthogonal complement S⊥ can be shown to be a subspace of S since if
h1, h2 ∈ S⊥ =⇒ h1 + h2 ∈ S⊥ by bilinearity of the scalar product.

Closedness Moreover, S⊥ is also closed since by the Cauchy-Schwartz inequality (theorem 9) the
scalar product is continuous w.r. to convergence of elements:

|〈xn, y〉 − 〈x, y〉| = |〈xn − x, y〉| ≤ ‖xn − x‖ · ‖y‖
xn→x−−−−→ 0.

Double complement We have that (S⊥)⊥ = {h ∈ H : 〈h, v〉, ∀v ∈ S⊥}, therefore S ⊆ (S⊥)⊥.
However, (S⊥)⊥ is a closed subspace of H, and if S is itself a closed subspace of H then S = (S⊥)⊥.
In general, (S⊥)⊥ is the smallest closed subspace of H which contains S.
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5.2 Orthogonality Lecture 5: Hilbert spaces

Def. (Direct sum)

A vector space H is said to be the direct sum of two subspaces V and W , and we write
H = V ⊕W , if each h ∈ H has a unique representation

h = v + w, v ∈ V,w ∈W.

Theorem 11 (Orthogonal decomposition)

Let H be a Hilbert space and let V ⊆ H be a closed subspace of H. Then, H = V ⊕ V ⊥,
therefore there exist unique v ∈ V , w ∈ V ⊥ such that

h = v + w.

Corollary 2 (Orthogonal projection)

As a consequence of the theorem, we observe that v is the orthogonal projection of h onto V ,
which is the element in V which has minimal distance from h,

v = argmin
z∈V

‖h− z‖.

Proof.
We want to solve the minimization problem assuming h 6∈ V , otherwise v = h,

min
z∈V
‖z − h‖.

We define
δ := inf

z∈V
‖h− z‖,

and we take a sequence vn ∈ V such that δ ≤ ‖h − vn‖ ≤ δ + 1
n . Since we are in a Hilbert space,

using the parallelogram identity we have that

‖vn − vm‖
n,m→∞−−−−−→ 0,

therefore vn
n→∞−−−−→ v ∈ V since V is closed and

δ ≤ ‖h− v‖ ≤ δ.

Def. (Orthonogonal projection operator)

For all V ⊆ H closed subset of H we define the orthogonal projection operator PV as
the operator that projects h = v + w onto the space V,

h 7−→ PV (h) = v.
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Theorem 12 (Projection principle)

The orthogonal projection v = PV (h) is characterized by the two following properties:

1. (Projection is in the subspace): v ∈ V .

2. (Projecting twice leaves unchanged): 〈v − h, z〉 = 0 for all z ∈ V.

5.3 Random variables

Of particular interest is the case in which (X,X , µ) = (Ω,F , P ) with P probability measure, indeed
L2(Ω) is the space of (equivalence classes of) random variables such that

E[|X|2] <∞,

with norm ‖X‖ = E[|X|2]
1
2 , inner product 〈X,Y 〉 = E[XY ] and distance between random variables

given by d(X,Y ) = E[|X − Y |2]
1
2 . Since L2(Ω) is a Hilbert space, in particular it is also complete

and therefore if (Xn)n is a Cauchy sequence of random variables, i.e. such that

lim
m,n→∞

E[|Xm −Xn|2] = 0,

then (Xn)n converges in quadratic mean to X ∈ L2(Ω).
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Lecture 6: Hilbert spaces (cont.)
2021-11-24

We are interested in finding a solution to the problem of computing the projection PV (x) of an
element x of the Hilbert space X, where V is a closed subset of X.

6.1 Basis of a Hilbert space

Example (Conditional distribution)

Consider for instance the problem of finding the minimizer over

E[(X − E[X|V ])2] = min
z∈V

E[(X − Z)2],

therefore E[X|V ] is the orthogonal projection of X over the subspace.

Example (Linear least squares estimation)

Given X,Y ∈M2 we want to find a, b ∈ R such that

argmin
a,b∈R

E[(Y − a− bX)2].

We can rewrite this problem as an orthogonal projection over a Hilbert space M2 given the
closed subset V = {Y ∈M2 : Y = a+ bX, for some a, b ∈ R}. Given Y ∈M2 we define the
orthogonal projection of Y

PV (Y ) = E[Y |V ],

as the element in V with minimal distance from Y ,

PV (Y ) = a+ bX, for some a, b ∈ R,

such that

E[(Y − PV (Y ))2] = min
Z∈V

E[(Y − Z)2] = min
α,β∈R

E[(Y − α− βX)2].

Therefore, the problem is how to compute the orthogonal projection on V .

We want a method to compute the orthogonal projection of elements in a Hilbert space when given
a subspace V . In general, we can use two approaches in order to perform the required operation:

1. Write down the objective function and minimize it, as in the examples above.

2. Use the concept of a basis as in standard linear algebra.

Def. (Orthonormal set)

Let H be a Hilbert space, then a set {ei, i ∈ N} is called an orthonormal set if

〈ei, ej〉 = δij =

0 if i 6= j

1 if i = j
for any i, j ∈ I.
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6.1 Basis of a Hilbert space Lecture 6: Hilbert spaces (cont.)

Example (Rn)

In Rn an orthonormal set is {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.

Theorem 13 (Orthonormal basis)

Let H be a Hilbert space and {ei, i ∈ I} ba an orthonormal set of elements of H. Then, the
following conditions are equivalent

1. If for some h ∈ H we have 〈h, ei〉 = 0 for all i ∈ I, then h = 0.

2. For every h ∈ H, then h =
∑
i∈I〈h, ei〉ei.

Orthonormal basis If 1. or 2. hold, then we say that {ei, i ∈ I} is an orthonormal basis of H.

Def. (Fourier coefficients)

The elements 〈h, ei〉 are called Fourier coefficients of x w.r. to the orthonormal sequence
(ei)i∈I .

Lemma 1 (Fourier coefficients)

Any h in an inner product space H can have at most countably many nonzero Fourier
coefficients 〈h, ei〉 w.r. to a family of orthonormal elements {ei, i ∈ I}. Hence, we can arrange
the elements such that

h =

∞∑
k=1

〈h, ek〉ek,

and this sum does not depend on the order of the elements.

Approximation We have a direct way of approximating any element h ∈ H in terms of the basis
{ei, i ∈ I} by using the second property of the theorem. Indeed, for N fixed we have

lim
N→∞

‖h−
N∑
i=1

〈h, ei〉ei‖,

and we have that the norm of h is equal to

‖h‖2 = 〈h, h〉 = 〈
∑
i

〈h, ei〉ei,
∑
j

〈h, ej〉ej〉 =
∑
i,j

〈h, ei〉〈h, ej〉〈ei, ej〉 =
∑
i=j

〈h, ei〉〈h, ej〉.

Theorem 14 (Separability)

Every Hilbert space admits an orthonormal basis. Moreover, if the orthonormal basis is count-
able, |I| = |N|, then H is called a separable Hilbert space.
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6.2 Properties of linear operators Lecture 6: Hilbert spaces (cont.)

Remark The sum of an uncountable set can be interpreted first by saying that I = R means

h =
∑
i∈I
〈h, ei〉ei ⇐⇒ 〈h, ei〉 6= 0 only for a countable J ⊆ N and h =

∑
j∈J
〈h, ei〉ei.

Let V ⊆ H be a subspace of H, then V is itself a Hilbert space with the same scalar product of
H and it is closed. Then, we can find an orthonormal basis of V given by the orthonormal set of
vectors {vi : i ∈ I} and for every h ∈ H we have the orthogonal projection

PV (h) =
∑
i

〈h, vi〉vi.

Example (Linear least squares)

back to our example, V = {α + βX,α, β ∈ R}. Then, a basis of V is simply {1, X}, which
however is not orthonormal. Firstly, we want them to be orthogonal and

〈1, X〉 = E[X] 6= 0 in general,

therefore we replace X by X − E[X] and {1, X − E[X]} is still a basis of V . Finally, we
normalize each vector by their norm

‖1‖2 =
√
E[(1)2] = 1

‖X − E[X]‖2 =
√
E[(X − E[X])2] =

√
V[X].

Therefore we finally obtain the orthonormal basis
{

1, X−E[X]√
‖V[X]‖

}
, and the orthogonal projec-

tion PV (Y ) of Y onto V is simply

PV (Y ) =

2∑
i=1

〈Y, vi〉vi

= 〈Y, 1〉 · 1 + 〈Y, Y − E[X]

V[X]
〉 · X − E[X]

V[X]

= E[Y ] +
E[XY ]− E[X]√

V[X]
· X − E[X]√

V[X]

= E[Y ] +
Cov(X,Y )

V[X]
(X − E[X]).

6.2 Properties of linear operators

We now generalize to the infinite-dimensional case the properties of linear operators seen in linear
algebra.

T : Rn −→ Rn

x 7−→ Ax

n→∞−−−−→
T : H −→ H

f 7−→ Tf
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6.2 Properties of linear operators Lecture 6: Hilbert spaces (cont.)

Def. (Adjoint operator)

Let T : H −→ H be a linear operator on a Hilbert space H, we say that T ∗ : H −→ H is
the adjoint operator of T if T ∗ is such that

〈Tx, y〉 = 〈x, T ∗y〉, for all x, y ∈ H.

Transpose This definition generalizes the transpose of a matrix A associated to a linear transfor-
mation, since for any matrix A ∈Mm×n(R),

〈Ax, y〉 = (Ax)>y = x>A>y = 〈x,A>y〉.

We consider the operator
T : L2(0, 1) −→ L2(0, 1)

f 7−→ Tf(x) =

∫ x

0

f(t) dt.

Example

Firstly we have to prove that if f ∈ L2(0, 1) then Tf ∈ L2(0, 1) since

∫ 1

0

|Tf(t)|2 dt =

∫ 1

0

∣∣∣∣∫ t

0

f(s) ds

∣∣∣∣2 dt

≤
∫ 1

0

t

∫ t

0

|f(s)|2 ds dt (Jensen)

≤
∫ 1

0

t

∫ 1

0

|f(s)|2 ds dt (0 ≤ s ≤ t ≤ 1)

≤
∫ 1

0

t‖f‖22 dt

=
1

2
‖f‖22.

Therefore, Tf ∈ L2 and t is linear (integral is linear) and bounded since by the computation
above we have

‖Tf‖22 ≤
1

2
‖f‖22.

In order to compute the adjoint we have to find a T ∗ such that

〈Tf, g〉 =

∫ 1

0

Tf(x)g(x) dx =

∫ 1

0

f(x)T ∗g(x) dx = 〈f, T ∗g〉.
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6.2 Properties of linear operators Lecture 6: Hilbert spaces (cont.)

The two terms have to be equal, i.e.∫ 1

0

f(x)T ∗g(x) =

∫ 1

0

Tf(x)g(x) dx

=

∫ 1

0

∫ x

0

f(t) dtg(x) dx (def.)

=

∫ 1

0

∫ 1

t

f(t)g(x) dx dt (0 ≤ t ≤ x ≤ 1)

=

∫ 1

0

f(t)

(∫ 1

t

g(x) dx

)
dt

Therefore, we conclude that

T ∗g(t) =

∫ 1

t

g(x) dx.

Def. (Self adjoint – symmetric – operator)

If T ∗ = T we say that T is a self-adjoint (or symmetric) operator.

Def. (Eigenfunction)

Given an operator T : H → H, we say that λ ∈ R is an eigenvalue of T if there exists an
h ∈ H such that

Th = λh,

and h is called eigenfunction (or eigenvector).

Eigenvalues of T are contained in the so-called spectrum of T , that is

{λ ∈ R such that (T − λI) is not invertible},

where the operator T − λI is defined as

T − λI : H −→ H

h 7−→ Th− λh.

If λ is an eigenvalue of T then there exists h ∈ H such that (T−λI)(h) = 0. In the finite-dimensional
case, the set of eigenvalues coincides with the spectrum, whereas in the infinite-dimensional case
they form the point spectrum of T.

Def. (Compact linear operator)

Operators for which the spectrum is given by the set of eigenvalues are called compact
linear operators.
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Prop. 6 (Compact operators compress the space)

An operator T : H −→ H is compact if and only if given any bounded sequence hn ∈ H not
necessarily converging, then Thn

n→∞−−−−→ Th.

Transition kernel A compact operator in L2 is typically of the form of an integral w.r. to a
transition kernel K,

f −→ Tf(x) =

∫
A

K(x, y)f(y) dy,

and in the example above this was exactly

f −→ Tf(x) =

∫ 1

0

1[0,x](y)f(y) dy.

Symmetric compact operators are diagonalizable just like symmetric matrices in the finite-
dimensional case.

Prop. 7 (Existence of an orthonormal basis)

If T : H −→ H a is compact and symmetric operator on a separable Hilbert space H, then
there exists an orthonormal basis {ei, i ∈ I} of H made of eigenfunctions of T , i.e.

Tei = λei, for all i ∈ I.

Vanishing eigenvalues Moreover, the eigenvalues of T are such that {λi, i ∈ I} can be either a
finite set (i.e. some of them are equal) or an infinite set and

lim
i→∞

λi = 0.

Def. (Hilbert-Schmidt operator)

A compact and symmetric operator T is said to be a Hilbert-Schmidt (or trace-class)
operator if T also satisfies the following condition,

∞∑
i=1

|λi|2 <∞.

Example (Continued)

Let Tf(x) =
∫ x

0
f(t) dt, then T is linear bounded from before. Moreover, it can be proven

that T is compact but not symmetric, therefore we want to compute its eigenvalues if they
exist: we want to find λ ∈ R such that

Tf(x) = λf(x) for all x,
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therefore ∫ x

0

f(t) dt = λf(x) ⇐⇒ f continuous and differentiable,

therefore if we differentiate both sides we find

∂

∂x

∫ x

0

f(t) dt =
∂

∂x
λf(x) ⇐⇒

f(x) = λf ′(x)

0 = λf(0)

therefore f(x) = ex/λ =⇒ f ′(x) = 1
λe

x/λ. However, there λe0 = λ but since λ = 0 we have
f = 0 is not an eigenvalue. Therefore, T has no eigenvalues.

Theorem 15 (Riesz’s representation)

Let T : H → H be a linear continuous operator on a Hilbert space H. Then there exists a
unique v ∈ H such that for all h ∈ H.

Th = 〈h, v〉,

and moreover ‖T‖ = ‖v‖.
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