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Lecture 1: Principal component analysis

Lecture 1: Principal component analysis
2022-01-13

Consider a sample of n observations of p variables, then we usually define the observed data matrix
as the following quantity,

Xn×p =

x11 . . . xip

xn1 . . . xnp

 =


x>1
...
x>n

 .

In the following sections, we briefly review a set of matrix definitions, identities, and properties that
we will find useful throughout the course.

1.1 Matrix algebra review

Def. (Orthogonal matrix)

A square matrix Q is called orthogonal if Q>Q = I.

Properties

› Q−1 = Q>

› QQ> = I

› |Q| = ±1

› A,B orthogonal matrices, then A>B = C is still an orthogonal matrix.

Proof.

C>C = B>AA>B = B>B = I.

Def. (Semi-orthogonal matrix)

A matrix Qn×p is called semi-orthogonal if either

Q>Q = Ip and QQ> 6= In

or

Q>Q 6= Ip and QQ> = In

Def. (Eigenvalue)

Let A be a p×p square matrix, then the roots {λ1, . . . , λp} ∈ C of the characteristic equation

det(A− λI) = 0

are called eigenvalues .
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1.2 Singular value decomposition Lecture 1: Principal component analysis

Def. (Eigenvector)

Counting multiplicity, for each λi eigenvalue there exists a unique eigenvector γi associated
to λi such that

Aγi = λiγi.

The uniqueness is constrained to γ>i γi = 1.

Remark If A is symmetric, then λi ∈ R for all i.

Remark If all λi > 0 we have that x>Ax > 0 for any x ∈ Rp and A is called positive-definite.
If all λi ≥ 0, then x>Ax ≥ 0 and A is positive-semidefined.

Def. (Rank)

The rank of A is defined as rankA = #(λi > 0).

Properties If λi are eigenvalues for A, then

1. Addition: |A+ αI − (λ+ α)I| = 0 =⇒ α+ λi are eigenvalues of A+ αI.

2. Multiplication: |αA− αλI| = 0 =⇒ α · λi are eigenvalues of αA.

Theorem 1 (Spectral decomposition)

A symmetric matrix A can be written in terms of its eigenvalues and eigenvectors as

Ap×p = ΓΛΓ> =

p∑
i=1

λiγiγ
>
i ,

where Λ = diag(λ1, . . . , λp) and Γ = (γ1 γ2 . . . γp) is orthonormal, where eigenvalues and
eigenvectors are counted with multiplicity and λ1 > λ2 > . . . > λp.

Power With the above decomposition, we have a fast way of computing Aq,

Aq = ΓΛqΛ>.

If A � 0 then q ∈ Q \ 0, else if A � 0, then q ∈ Q+.

Principal components We have that γ1 is the solution to the following maximization problem

γ1 = argmax
x

x>Ax =⇒ γ>1 Aγ1 = γ>1 ΓΛΓ>γ1 = λ1.

The second eigenvalue maximizes
γ2 = argmax

x>x=1
x>γ1=0

x>Ax
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1.2 Singular value decomposition Lecture 1: Principal component analysis

1.2 Singular value decomposition

Theorem 2 (Singular value decomposition)

Let Xn×p be a general matrix, then X can be written as

Xn×p = Un×nDn×pV
′
p×p =

min{n,p}∑
i=1

diujv
>
i ,

where UU> = In, V V > = Ip, and

D =



d1 0 0 0 . . . 0

0 d2 0 0 . . . 0

0 0 d3 0 . . . 0

0 0 0 d4 . . . 0

0 0 0 0 . . . dmin{n,p}

0 0 0 0 . . . 0
...



Remark The matrix D has lots of zeros, therefore if we set di = 0 for i ≥ h, effectively truncating
the approximation to the first h components, we obtained a compressed representation of X.

Example (Linear model)

Consider a linear model y = Xβ + ε, and let P be the projection matrix on the parameter
model estimates, i.e.

Py = X(X>X)−1X>y,

and consider now the singular value decomposition of X = UDV >:

P = UDV >(V DU>UDV >)−1V DU>

= UDV >(V D2V )−1V DU>

= UDV >V D−2V V DU>

= UDD−2DU>

= UU>.

We have that Un×p is a semi-orthogonal matrix, therefore U>U = Ip but UU> 6= In.

Suppose now that we apply a linear transformation on X before computing the estimates,
i.e.

Z = XC, C orthogonal and rankC = p,
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1.2 Singular value decomposition Lecture 1: Principal component analysis

then Z = UD(V C)> = UDC>V > and the projection matrix PZ can be calculated as

PZ = UDC>V >(V CDU>UDC>V >)−1V CDU>

= UDC>V >V CD−2C>V >V CDU>

= UU>

Remark The above result is slightly more complicated but still holds if C is not orthogonal
but has rank p.

Exercise: Let P be the projection matrix of rank p, then prove that the eigenvalues are all 1 and
that the residual maker matrix I − P has rank n− p and λ1, . . . , λn−p = 1.

Use the properties of the eigenvalues (addition/multiplication).

Def. (Centering matrix)

Consider the matrix H = 1
n

(
1 1 ... 1
1 1 ... 1
... ... ... ...

)
= 1(1>1)−11>, which is the linear model when

only the intercept term is available. Then, I −H is the centering matrix and

XC := (I −H)X,

which has column-wise zero mean.

Notation Starting from now, we will not use a centering matrix anymore, and we assume that X
has been already centered.

Def. (Variance-covariance matrix)

For a centered matrix X we define 1
nX
>X as the variance-covariance matrix of X.

We want to look at the first principal component, which is defined as the direction g such that

ĝ = argmax
g

V[Xg]

= argmax
g

g>X>Xg,

and this problem has the solution given by the singular value decomposition of X>X. Let

X>X
s.d.
= ΓΛΓ>,

we know that the maximum is attained in the first eigenvector, ĝ = γ1.
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1.2 Singular value decomposition Lecture 1: Principal component analysis

Def. (Principal components)

The jth principal component is the jth direction of maximum variance constrained to being
uncorrelated with the previous j − 1 directions of maximum variance, and

gj = γj ,

where γj are the eigenvectors of the SVD of X>X.

The variance of the ith principal components are given by

Xγi =
1

n
λi.

The fraction of explained variance by the ith principal component is

%Vi =
λi/n

tr(Λ)/n
=

λi∑p
i=1 λi

.

We now describe the connection between the SVD and X and the SVD of X>X:

X>X
sp. dec.−−−−−→ ΓΛΓ>

X
sing. val.−−−−−−→ UDV >

Then, we have that
X>X = V DU>UDV > = V D2V,

therefore the singular value decomposition of X is such that V = Γ and D = Λ2.
In general, the principal components of X are defined by UD, therefore we can obtain them by
applying the transformation

UD = XΓ.

Example (Problems with SVD)

Suppose we have a biometric test where we have different unit of scale: if we change the
unit of measurement, we get different results in terms of principal components.

To do so, we usually apply the SVD to the standardized variables whenever we do not have
variables on the same scale.

Exercise Prove that P = X(X>X)−1X> has rank p, then prove that (I −P ) has rank n− p and
find the possible eigenvalues of P and I − P.

Proof.
Since P is the projection matrix on 〈x1, x2, . . . , xp〉, we have that

rankP = rankX = p.

5
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Moreover, we have that I−P is the projection matrix on the orthogonal subspace 〈x1, x2, . . . , xp〉⊥,
which is a linear subspace of dimension n− p, and therefore rank I − P = n− p.

Since the projection matrix P is such that P = P 2, we have that if λ is an eigenvalue of P relative
to an eigenvector v, then

λ2v = P 2v = Pv = λv,

hence λ2 = λ, and this can only happen if either λ = 0 or λ = 1. The same applies for (I −P ), since
(I − P )2 = (I − P ).

Exercise Let Xn×p and PX = X(X>X)−1X> be the projection matrix, let now R be a rotation
matrix such that R>R = I and RR> = I. Define Y = XR, prove that PY = Y (Y >Y )−1Y > = PX .

Proof.

PY = Y (Y >Y )−1Y >

= XR(R>X>XR)−1R>X>

= XRR>(X>X)−1RR>X> (since R−1 = R>)

= X(X>X)−1X>.

6
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Lecture 2: Multidimensional Scaling
2022-01-20

MultiDimensional Scaling (MDS) is a technique which starts from an observed matrix D of pairwise
distances and aims to reconstruct an approximate low-dimensional configuration of points which
could have produced D. This in turn is very useful for obtaining a low-dimensional representation
of the data in order to visualize clusters and extract relevant information.

Suppose that we have x1, . . . , xn observations in a general space Rp, and we know the distances
between each pair of elements dij = d(xi, xj). This distance can be any arbitrary distance function,
as long as it satisfies the three following properties

1. dij ≥ 0 and dij = 0 ⇐⇒ i = j.

2. dij = dji

3. dij + djk ≥ dik

Example (Euclidean distance in Rp)

If xi, . . . , xn ∈ Rp, then

dij =
√

(xi − xj)>(xi − xj) = ‖xi − xj‖2.

Note Since we can start from an arbitrary distance matrix D, it’s possible to apply the multi-
dimensional scaling even without knowing a) the original data which produces D and b) the true
dimension of the underlying space.

Def. (Multidimensional scaling)

Consider the observed symmetric square matrix of distances Dn×n = (dij)i,j=1,...,n, themul-
tidimensional scaling (MDS) procedure aims to obtain a low-dimensional representation
z1, . . . , zn ∈ Rk such that

z1, . . . , zn = argmin
v1,...,vn

∑
i,j

(dij − ‖vi − vj‖2)2. (1)

Interpretation With the above minimization, we obtain a low-dimensional representation of the
higher-dimensional observed data. The obtained configuration is thus as similar as possible in terms
of distance structure to the original points x1, . . . , xn.

Notation

› We denote by D2 = (d2ij)i,j the matrix of squared distances, and note that D2 6= D2.

› We also define the residualizing matrix by H = I − 1
n11

> = I − 1
nJ

7



Lecture 2: Multidimensional Scaling

› Finally, we define B = − 1
2HD2H, which is a double-centering of D2. The resulting row-wise

and column-wise sums are both zeros:

1
>HD2H = 0

HD2H1 = 0>

There is a very strong connection between the principal component analysis and the multidimensional
scaling.

Def. (Euclidean matrix)

We say that the matrix D = (dij)i,j is euclidean if there exists a configuration
z1, . . . , zn ∈ Rp such that dij = ‖zi − zj‖2

Note In the following, we denote by Z the matrix of the corresponding configuration of n vectors,

Z =


z>1
z>2
...
z>n

 . (2)

Theorem 3 (Euclidean matrix and B matrix)

Let D be a matrix and define B = − 1
2HDH, then D is euclidean ⇐⇒ B is positive

semidefinite. We call the matrix B the inner product matrix.

Proof.
Since −2B = HD2H and H = I − 1

nJ , then

−2B = D2H −
1

n
JD2H

= D2 −
1

nJ
− 1

n
JD2 +

1

n
JD2J.

For each element of −2B, we have

(−2B)ij = d2ij −
1

n

∑
h

d2ih −
1

n

∑
k

d2kj +
∑
h

∑
k

1

n2
dhk, (3)
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2.1 Relationship with PCA Lecture 2: Multidimensional Scaling

now since D is euclidean, we can express dij in terms of a distance between each element zi and zj ,
d2ij = (zi − zj)>(zi − zj) = z2i − 2zizj + z2j , hence

1

n

∑
h

d2ih =
1

n
nz2i +

∑
h

z2h
n
− 2zi

1

n

∑
h

zh

= z2i +

h∑
i=1

z2h
n
− 2ziz

1

n

∑
h,k

dhk =

∑
h z

2
h

n
+

∑
h z

2
h

n
− 2z2

If we substitute the above terms in Equation (3), then we obtain (exercise)

(−2B)ij = −2(zi − z)>(zj − z).

Note We have that B = (bij)i,j = (z>i zj)i,j , hence the name inner product matrix,

B = HZ(HZ)>.

2.1 Relationship with PCA

The following theorem states the link between the metrix MDS and the principal component, and
gives an algorithm for immediately obtaining the solution to the MDS problem (1).

Theorem 4 (MDS and principal components)

Let D be euclidean, then if we define Z as (2), we have that if B ≥ 0, then there exists
Z = US such that

B = US2U>,

where UU> = I and S2 = diag(s21, s
2
2, . . . , s

2
k)

Remark From the above theorem, if we compute the singular value decomposition on a positive-
semidefined B = − 1

2HD2H, then we obtain a representation Z = US which minimizes the multidi-
mensional scaling problem.

Low-dimension If we choose a lower-dimensional representation, say z1, . . . , zn ∈ Rk with k < p,
then we obtain the optimal configuration with minimal discrepancy from the observed matrix D.

Proof.
Define B = US2U> = ZZ>, where Z = US. Then, we know that if we write

(zi − zj)>(zi − zj) = z2i + z2j − 2zizj

= bii + bjj − 2bij ,

9



2.2 Non-metric MDS Lecture 2: Multidimensional Scaling

but then we can write each bij in terms of the distances, since B = − 1
2HD2H. Check that

bij = d2ij −
1

n

∑
h

d2ih −
1

n

∑
k

d2kj +
1

n2

∑
h,k

d2hk

= −1

2
(−2d2ij)

= d2ij .

2.2 Non-metric MDS

References Chen and Buja (2013)

The above discussion states the optimality of metric MDS, i.e. when D is euclidean, and its
equivalence to principal component analysis. However, most of the times D is not euclidean and the
resulting matrix B = − 1

2HD2H is not guaranteed to have non-negative eigenvalues. Therefore, a
lot of research has developed non-metric variants of the multidimensional scaling procedure, which
extend its analysis to more general dissimilarity metrics.

Exercise On Moodle, try to analyze the uploaded dataset using the MDS approach.

2.3 Stress function for nonlinear MDS

1. Classical scaling indirectly approximate the distance through inner products using eigende-
compositions.

2. Distance scaling tries to approximate the target distance using high-dimensional approxima-
tion.

X = argmin
x

∑
i,j

‖D − dij‖2

We can consider the following stress function in terms of the found solutions dij ’s and the observed
matrix D = (Dij),

S(d|D) =
∑
i,j

(dij −Dij)
2,

=
∑
i,j

d2ij︸︷︷︸
attractive

energy

−2 Dijdij︸ ︷︷ ︸
repulsing
energy

.

Since this function can be interpreted in terms of attractive and repulsive energies between nodes, it
can be optimized using techniques from the graph-drawing literature. There is no universally better
stress function, therefore some solutions have been proposed in the literature:

› Embed stress functions in a parametric family, avoiding ad hoc choices.

› Measure goodness of stress choice using meta-criteria.

10



2.3 Stress function for nonlinear MDS Lecture 2: Multidimensional Scaling

2.3.1 Parametric stress functions

We can use the Box-Cox transformation to define a family of stress functions parametrized by α ∈ R,

BCα(d) =

dα−1
α α 6= 0

log d α = 0

which includes the following stress functions:

1. Power laws and logarithmic laws

2. Power law for up- or down-weighting of small/large distances

3. Regularization parameter for incomplete distance data.

S(d|D) =
∑
i,j

Dν
ij

(
BCµ+λ(dij)−Dλ

ijBCµ(dij)
)
,

where µ is a repulsive strength, λ is the relative strength btw attracting and repulsive force, and ν
is the weight parameter.

Prop. 1 (Edgewise unbiasedness)

All BC stress functions are minimized by the embeddings that produces exactly D.

The parameters produce different type of compromises.

The BC stress functions can be extended to incomplete data by imputing missing information using
an infinitesimally-small weight,

S(d|D) =
∑
i,j∈E

Dν
ij

(
BCµ+λ(dij)−Dλ

ijBCµ(dij)
)
− tν−λ

∑
i,j 6∈E

BCµ(di, j),

where t is a balancing parameter.

The choice of parameters can be guided by meta-criteria based on the KNN embedding. The idea
is to define two neighborhoods for each point i, ND(i) and Nd(i) based on Dik and dij respectively,
and to compare the observed overlap

Md(i) =
|ND(i) ∩Nd(i)|
|ND(i)|

,

which is adjusted using a hypergeometric distribution as a baseline expected value under completely
random overlap of points.

11



Lecture 3: Canonical correlation analysis

Lecture 3: Canonical correlation analysis
2022-01-27

Canonical correlation analysis (CCA) is a rather old technique which has seen a big resurgence of
interest, especially in psychological and psychometric analysis. We consider the following problem:
given n observation of two sets of variables,

X =


x11 . . . x1p

x21 . . . x2p
... . . .

...
xn1 . . . xnp

 , Y =


y11 . . . y1q

y21 . . . y2q
... . . .

...
yn1 . . . ynq


the goal is to find a linear combination Cx = Xa and a linear combination Cy = Y b such that

(a1, b1) = argmax
a,b

Corr(Xa, Y b). (4)

Notation The quantities Cx and Cy are called scores.

Notation We define the following matrices:

V[X] : S11 p×p =
1

n
X>H>HX =

1

n
X>HX

V[Y ] : S22 q×q =
1

n
Y >HY

Cov(X,Y ) : S12 p×q =
1

n
X>HY

The maximization problem in (4) thus becomes

(a1, b1) = argmax
a,b

a>S12b√
a>S11a · b>S22b

=
Cov(Cx, Cy)√
V[Cx] · V[Cy]

(5)

and if we define CX = HXa, we have SCxCx = 1
na
>X>HXa = a>S11a, and the same applies to

SCyCy = b>S22b. Finally, Cov(Cx, Cy) = a>S12b, hence the final equality.

Since the solution is invariant under rescaling of vectors a and b, we can find an infinite number of
solutions unless we impose some constraints on the maximization procedure. In this case, we impose
the following constraints to Equation (5), which guarantee that the solution is unique:

a>S11a = 1

b>S22b = 1

12



Lecture 3: Canonical correlation analysis

After finding the first solution, we can proceed similarly to principal component analysis in order to
find the second pair of canonical vectors, such that

(a2, b2) = argmax
a,b:

a>S11a=1
b>S22b=1
a>1 S11a=0

b>1 S22b=0

a>S12b√
a>S11a · b>S22b

=
Cov(Cx, Cy)√
V[Cx] · V[Cy]

(6)

Theorem 5 (Canonical correlation analysis)

The k solutions to the canonical correlation problem can be found by defining the following
matrix,

S
−1/2
11 S12S

−1/2
22

SVD
= UDV >.

Then, the solution A = (a1 · · · ak) and B = (b1 · · · bk) is given by the first k eigenvectors
of U and V , respectively.

Proof.
Let us start by considering a>S12b under the constraint that a>S11a = 1 and b>S22b = 1. Apply
the following change of coordinates,

u0 = S
1/2
11 a =⇒ a = S

−1/2
11 u0

v0 = S
1/2
22 b, =⇒ b = S

−1/2
22 v0

then the problem (5) becomes
argmax
u0,v0

u>0 S
−1/2
11 S12S

−1/2
22 v0,

under the constraints u>0 u0 = 1 and v>0 v0 = 1. Hence, the solution is given by the first eigenvectors
of the U and V matrices from the SVD of the matrix

S
−1/2
11 S12S

−1/2
22 = UDV >.

Repeating the argument yields the following solutions to the canonical correlations problem.

Remark Note that if k = rank
(
S
−1/2
11 S12S

−1/2
)
, then we have that in most cases

k ≈ min
{

rankX, rankY
}
,

hence we can find at most k canonical vectors

U = (a1, a2, . . . , ak), V = (b1, b2, . . . , bk).

As always, this solution is unique up to a change in sign of the eigenvectors.

Partial least squares CCA has connection to the Partial Least Squares (PLS) estimator, which

13



Lecture 3: Canonical correlation analysis

Consider the SVD applied to the residualized matrices,

HX = UXDXV
>
X

S11 = VXD
2
XV
>
X

HY = UYDY V
>
Y

S22 = VYDY V
>
Y

S12 = VXDXU
>
XUYDY V

>
Y

then, if we write the matrix solution in terms of the above SVD, we have

S
−1/2
11 S12S

−1/2
22 = VXD

−1
X ��

��
V >X VXDXU

>
XUYDY�

��
V >Y VYD

−1
Y V >Y

= VXU
>
XUY V

>
Y ,

and we have that UY V >Y is the SVD of the normalized data, i.e. all variances are equal. Hence,
we conclude that this solution is invariant under any linear transformation of the data (unlike the
PLS).

14
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Lecture 4: Closed-testing framework
2022-02-02

In this lecture we will consider the problem of performing multiple tests while controlling the overall
Type I error at the specified α level. We will do so by casting the usual multiple comparison adjust-
ments into the closed-testing framework (Goeman and Solari, 2011). This framework offers a unified
view of multiple testing and is the de-facto standard for hypothesis testing.

4.1 Multiple testing

Consider two groups y1 and y2, which we assume are drawn from two densities,

y1 ∼ P1, y2 ∼ P2.

Our goal is to compare the two groups and see if the samples come from the same distribution.
Consider for example when we assume a parametric form for Pi, for instance P1 = N (µi, σ

2), then
the hypothesis would become H0 : µ1 = µ2

H1 : µ1 6= µ2

With the usual t-test, we consider the test statistic

tobs =
y1 − y2
σ̂y1−y2

∼ tn−2,

and we define the p-value as the probability under the null hypothesis of observing a result as
extreme as the observed statistic,

p = P(|T | ≥ tobs|H0), T ∼ tn−2.

The statistical test is an object which yields a binary outcome, either 1 for a rejection and 0 for
a non-rejection, depending on the limit L that we choose,

ϕ =

1 if p ≤ L
0 if p ≥ L

(7)

We do have different types of errors, for instance

Type-I error P(ϕ = 1|H0) = P(p ≤ L|H0) ≤ α.

Power P(ϕ = 1|H1) ≥ α

Type-II error 1− power = β

if (1− β) ≥ α, the test is called unbiased, whereas if 1− β → 1, the test is consistent.
We have that the p-value of a continuous statistic t is uniformly distributed in [0, 1] under the null
hypothesis (Murdoch et al., 2008), i.e.

P |H0 ∼ U(0, 1),

whereas if the test is consistent, then under H1 the p-value is more skewed towards 0.
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4.2 Multivariate framework Lecture 4: Closed-testing framework

4.2 Multivariate framework

Consider now a setting in which we perform a statistical test on a multiple variable, i.e.

y1 ∼ P1, y2 ∼ P2, Pi ∈ Rn,

then the null hypothesis becomes
H1 : µ11 = µ21

H2 : µ12 = µ22

. . .

Hn : µ1n = µ2n

=⇒ H0 :

n⋂
i=1

Hi

We can solve the problem using Hotelling’s T , i.e.

T 2 = (y1 − y2)>Σ−1(y1 − y2),

which has a χ2 distribution if Σ does not have to be estimated. Whenever Σ has to be estimated by
a Σ̂, the T 2 statistic has a Hotelling’s T distribution. If p < L we conclude that there is a difference
between the distributions, but we do not know where this difference lies.

The concept is that there is a true set τ ⊆ {1, 2, . . . , n} that collect the true variables which differ
between he populations. Hence, the true null hypothesis is

H0 :
⋂
i∈τ

Hi.

H123

H12 H13 H23

H1 H2 H3

Figure 1: Graph of the hierarchical relationship between the null hypotheses.

We want a testing procedure such that all cases depicted in Figure 1 are considered and the rejection
happens at the α level. This is an extension of the Type-I error given by the family-wise error
rate, which can be loosely defined as

FWER = {at least 1 error among all hypotheses}

We can apply a Hotelling’s T test for any of the above situations, however we do not know which
of the i = 1, . . . , 23 null hypotheses is actually true.
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4.3 Bonferroni correction Lecture 4: Closed-testing framework

A good solution to the above problem is provided by the closed testing procedure, which has
been proven to be the only admissible procedure (Goeman and Solari, 2011), i.e. if there is another
procedure which controls the FWER then it must be a closed testing procedure.

Closed-testing procedure Consider p123 to be the p-value which tests H123, p12 the p-value
which tests H12, and so on. Suppose that we want to test individual hypotheses H1 and H2. We
reject H1 if we reject all hypotheses Hij , Hijk which contain the subscript 1, and the same applies
for H2. Then,

H1 rejected ⇐⇒ p1, p12, p13, p123 ≤ α

H2 rejected ⇐⇒ p2, p12, p23, p123 ≤ α

In general, the adjusted test using the above procedure for a general subset of null hypotheses
S ⊆ {1, 2, . . . , n}, denoted by ϕ̃S , is

ϕ̃ = min
S⊇S

ϕS ,

You can check using the definition (7) of statistical test that this indeed is the correct definition of
the closed testing procedure. Hence if ϕ̃S = 1 =⇒ we reject H1. This closed-testing procedure has
been first described by Marcus et al. (1976) and the proof of the fact that the FWER is controlled
by α is very simple.

Proof.
Consider H0 :

⋂
i∈τ Hi and the following sets,

A = {at least 1 false rejection}

B = {ϕτ = 1}

and observe that A ∩B = A by construction of the closed-testing procedure. We know that

P(A) = P(A ∩B) ≤ P(B) ≤ α,

since B is a proper test. Hence, the probability of making any false rejection is bounded by α.

4.3 Bonferroni correction

The most frequent approach to multiple testing is the Bonferroni procedure, which can be shown to
be a special case of the closed-testing procedure. For i ∈ {1, . . . ,m}, the statistical test for the i-th
hypothesis is

ϕ̃i = 1pi≤ α
m

= 1m·pi≤α,

hence we usually talk about adjusted p-values instead of adjusted limit.

Proof.
Assume that the set of true null hypotheses is τ , then the FWER for the Bonferroni procedure is

P
(⋃
i∈τ

pi ≤
α

m

∣∣H0

)
≤
∑
i∈τ

P
(
pi ≤

α

m

∣∣H0

)
= |τ | · α

m
≤ m · α

m
= α.
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4.4 Bonferroni-Holm Lecture 4: Closed-testing framework

Remark This is a very powerful result which does not assume any type of dependence between
the p-values. However, when the dependence is very high we have an extremely conservative test
which tends to be too strict.

4.4 Bonferroni-Holm

The Bonferroni-Holm procedure uses ordered p-values, and starts computing

p(1) ·m ≤ α =⇒ reject H1, otherwise stop

p(2) · (m− 1) ≤ α =⇒ reject H2, otherwise stop

...

p(m) · 1 ≤ α =⇒ reject Hm, otherwise stop

We will now see whether Bonferroni and Bonferroni-Holm procedures can be seen as special cases
of the closed-testing procedure. Suppose that we want to test the global null hypothesis H123, then
using Bonferroni we would test

Reject H123 ⇐⇒ min pi · 3 = p(1) · 3 ≤ α

Reject H12 ⇐⇒ min{p1, p2} · 2 = p(1) · 2 ≤ α

hence, if we reject for H123 we automatically reject all the connected null hypotheses. Consider now
rejecting H2, by the closed testing procedure we now only have to check for H23 if p2 · 2 ≤ α, and
we get a rejected H2 for free. Finally, we only need to check for H3, which can be done by only
checking if p3 ≤ α.

Hence, by applying the closed-testing procedure using the minimum function we are employing the
Bonferroni-Holm procedure.

In conclusion, the closed-testing procedure only needs the definition of

1. A hierarchical multiple testing setting.

2. Any kind of statistical testing procedure to put on each node (likelihood ratio, permutations,
bootstrap, . . . ).

Issues Given m tests, we have a total graph consisting of 2m − 1 nodes, hence we need to find
shortcuts in order to compute the overall procedure. In the Bonferroni case, we only need to sort
the p-values and we have a complexity of O(m).

Multiple testing procedures often tried to maximize the power in univariate leaf testsH1, H2, . . . ,Hm.
However, it is often the case that we can reject H12 under the closed testing procedure but neither
H1 nor H2 can be rejected. As a consequence, we get some information in which combinations yield
the difference between distributions.
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4.5 Multiple testing presentation Lecture 4: Closed-testing framework

Therefore, we can define a upper bound for the number of null hypotheses

m0(S = H123) = max
k
{|k| : ϕ̃k = 0}.

As a consequence, the lower bound on the number of alternative hypotheses

m1(S) = min
k
{|k| : ϕ̃k = 1} = |S| −m0.

For instance, rejecting H123, H12 and H13 means that among H1, H2, H3 we’re not able to judge
whether we have H1, H2 or H3 alternative hypotheses, but we are able to tell that two of them are
alternative.

Conclusion

With the closed-testing procedure, we are calculating confidence intervals in the number of
null hypotheses.

4.5 Multiple testing presentation

Corrections and shortcuts for huge number of hypothesis tests. Define R to be the number of total
rejected null hypotheses, V the number of false discoveries and U the true discoveries

FWER = P(V ≥ 1)

FDP =
V

R
,

FDR = E[FDP]

FWER methods are used in confirmatory analysis, when the level α has to be made before seeing
the data. the FDR method is used in exploratory research, since they are less stringent.

Closed testing allows mild, flexible and post-hoc inference.

1. Do not decide the hypotheses to be rejected.

2. Freely choose the collection of hypotheses

3. Confidence sets

Pros Simultaneous confidence sets over all sets and upper bounds

Cons Hypotheses have to be specified a priori, and low scalability in the number m of hypotheses.

One can be confident into making at least one of two rejections, while it is not possible to decide
whether to reject either H1 or H2.
Using the closed testing procedure with every test at level α, the whole procedure contains the FWER
at level α for all intersections. Upper confidence bounds given by (Goeman and Solari, 2011), both
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4.5 Multiple testing presentation Lecture 4: Closed-testing framework

for true discoveries and the FDP

qα(S) =
tα(S)

|S|
, for π(S).

As m increases, the power per hypothesis vanishes, whereas if there is sufficient signal the FDR does
not vanish. If all null hyp are true, FWER = FDR (Benjamini and Hochberg, 1995), whereas in all
other situations FWER > FDR and therefore the FDR is less stringent with more power.

Weak control Control the FWER when all hypotheses are true.

Strong control Control the FWER even when all hypotheses are not true.

Def. (Consonant procedure)

Consonant ⇐⇒ for all I ∈ I, HIrejected means that at least one Hi is rejected with i ∈ I.

Remark Only consonant procedures are admissible in hte FWER control.

Remark For controlling the FDP, non-consonant procedures should be taken into account.
Non-consonant closed testing procedures have false discovery proportion confidence bounds.

Some common FWER procedures and FDR controling procedures are based on the Simes test,
which rejects an intersection hypothesis Hi ⇐⇒ there is i ∈ [1, |I|] such that

. . .

which is similar to the Bonferroni test.

In general the Simes test contain the Bonferroni test, and therefore is a more powerful test. In
general, it holds for independent p-values and under certain forms of positive correlation.

Non-consonant procedures are starting to become relevant since the individual hypotheses gradually
became less relevant. In this case we want to find sets of hypotheses in which the proportion of false
rejection is low enough.

In particular, the Simes local test has non-vanishing power for the control of the false discovery rate.
Goeman 2017 proved that the Simes local test rejects an hypothesis if

min
{hα
i
p(i:I)

}
≤ α,

where hα = max{i ∈ (0, . . . ,m) : i · pm−i+j:B > j · α} is the size of the largest voxel set not rejected
by the procedure. A shortcut for estimating tα(S) can be defined as

dα(S) = max
1≤u≤|S|

{1− u+ |{i ∈ S : . . .}|}.
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Meijer (2019) provided an algorithm to calculate hα for all α simultaneously with order of time
O(m logm) and allows the computation of dα(S) with order O(m logm).
Note that hα does not depend on S, hence if it has been calculated then dα can be calculated for
many S’s in linear time. Finally, an upper bound for the FDP can be calculated as whereas the true
discovery proportion (TDP) has lower bound

FDP(S) =
tα
|S|

TDP(S) = 1− FDP(S),

and (Goeman and Solari, 2011) and goeman 2017 showed that

P(for all S ∈ S: TDP(S) ≤ TDP(S)) ≥ 1− α,

hence we can come back and change S after looking at the data since the procedure is valid for an
arbitrary choice of S.
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Lecture 5: Data splitting
2022-02-08

Data splitting is a way of solving the multiple comparison problem: the first half is used for selecting
the hypotheses we want to test, whereas the second part is used only for running the tests.

Algorithm 1 Data-splitting procedure

1: Divide the sample in two portions (L, I)

2: Choose the sample such that s = argmaxkX
L
k

3: Perform the one-sided test of the corresponding second portion

ϕ = 1

{
XI
s >

σ
√
nI
z1−α

}
.

Advantages

1. Simplicity : we are allowed to do any kind of selection on the first dataset.

2. Correctness: we do not have to worry about data snooping, since all inference is carried out on
a “fresh” dataset, after having decided the hypotheses that we want to test in the first dataset.

Disadvantages

1. Cox has proved that there is an effective power of the procedure, which has also been proven
to be lower than the Bonferroni procedure. Hence, in the i.i.d case the data splitting procedure
is always worse than the Bonferroni correction.

2. The “p-value lottery” is the fact that we get different results based on the splitting. The
randomness of the p-values depends on the split that we perform, and the variability is quite
substantial.

5.1 High-dimensional inference

Consider the linear model when p > n,

y = Xβ0 + ε, ε ∼ Nn(0, σ2In),

and denote the set of “active” predictors as S0 =
{
j ∈ {1, . . . , p} : β0

j 6= 0
}
and N0 = Sc. Suppose

that we split the data into two parts of size n/2 (Wasserman and . . . 2009) and run a penalized
regression to reduce the number of variables under scrutiny. After having selected the relevant predic-
tor, we use the second half of the data to perform hypothesis testing, using the classical least squares.

Let Ŝ be the set of selected hypotheses during the screening part, then we hope that S ⊆ Ŝ. Indeed,
for a model

y = XŜβŜ + ε,

if we were to miss some of the active variables, then we incur in the problem of omitted variable
bias, and our inferences would be grossly misled.
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5.1 High-dimensional inference Lecture 5: Data splitting

We construct the p-values on the second half of the dataset using

p̃j =

pj if j ∈ Ŝ
1 if j 6∈ Ŝ

and then we adjust the p-values using standard adjustments for multiple comparisons, such as the
Bonferroni procedure.

Algorithm 2 Single-split procedure

Input: y,X, α ∈ (0, 1) and a variable selection procedure Ŝ
1: Partition {1, . . . , n} into portions L, I of size nL and nI
2: Using L only, select ŜL ⊆ {1, . . . , p},
3: Apply OLS of yI on XI

ŜL
, compute the p-values testing H0j : β0

j = 0 for j ∈ ŜL

4: Adjust the p-values using some multiple testing adjustment

Theorem 6 (Single-split controls the FWER)

Assume that

1. The linear model y ∼ Xβ0 + ε is the true model

2. The variable selection procedure satisfies the screening property, i.e.

P(S0 ⊆ ŜL) ≥ 1− δ,

for some δ ∈ (0, 1).

3. The reduced design matrix for the second half of the sample satisfies

rank(XI
ŜL

) = |ŜL|.

Then, the single-split procedure yields FWER control at level

P(S̃ ∩N0 6= ∅) < α+ δ.

Proof.
Complete proof on the paper, we use the fact that the probability of false rejection is either when
we do not select the important variable or when we apply a false rejection.

Over the years, this procedure became much more attractive since the linear regression context
makes the Bonferroni no longer the uniformly more powerful approach.

p-value lottery There is still a problem of p-value uncertainty, which can be ameliorated by
multiple sample-splitting, similarly to the cross-validation procedure. In general, we cannot simply
average p-values since even the average of two independent U(0, 1)’s is not uniformly distributed.
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Algorithm 3 Multi sample-splitting procedure
1: for b = 1, . . . , B do

2: Apply the single-split procedure to obtain p̃(b)j for j = 1, . . . , p.
3: end for
4: Aggregate the p-values using

p̃j = 2 ·median(p̃
(1)
j , . . . , p̃

(B)
j ), j = 1, . . . , p.

5: Selected predictors are S̃ = {j ∈ {1, . . . , p} : p̃j ≤ α}.

Remark The intuition is that the median of U(0, 1)’s is approximately 0.5, hence by multiplying
by 2 we obtain on average 1. Using Markov’s inequality we obtain a bounded probability by α, which
is quite conservative.
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Lecture 6: Knockoff filters
2022-02-17

In this lecture we talk about the knockoff procedure and its relationship with the false discovery
rate (FDR). The FDR of a selection procedure is defined as

FDR = E
(
# false rejections

# rejections

)
.

The Benjamin-Hochberg procedure (Benjamini and Hochberg, 1995) is valid only under indepen-
dence or positive correlation of the covariates, hence it is not usable under the general linear model
setting.

6.1 Fixed-X knockoff

The original paper by Barber and Candès (2015) uses the idea to construct a new set of covariates
X̃ (knockoffs) without any assumptions on X, only if rankX = p and n ≥ 2p. Assume that

y = Xβ + ε, and n ≥ 2p,

the basic idea is that for each Xj we construct a knockoff copy X̃j . Let X>X = Σ, such that
‖Xj‖22 = 1, a knockoff copy X̃j of Xj must satisfy the property that

[X X̃]>[X X̃] =

(
X>X X>X̃

X̃>X X̃>X̃

)
=

(
Σ Σ− diag(s)

Σ− diag(s) Σ

)
, (8)

for some value 0 ≤ s ≤ 1. Hence, they exhibit the same correlation structure as the original feature
as well as approximately equal cross-correlations:

› Same correlation structure: X̃>X̃ = X>X

› Preserved cross-correlation: X̃>j Xk = X>j X̃k

› Standardization: X>j Xj = X̃>j X̃j = 1

Remark: this procedure has no interaction with y, since it only uses the matrix X.

Idea: Under the null hypothesis, this construction allows us to exchange the original variables with
the knockoff variables while maintaining the same correlation structure (immediate from (8)), and
moreover

[X X̃]>swap(J)y
d
= [X X̃]>y.

Proof.
Livio’s paper.

The idea is that if there is no effect, selecting a variable and a knockoff has approximately the same
probability. This is because y is not used in constructing X̃, hence X̃ is completely uncorrelated
with y.
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With the knockoff constructed, we can fit a model selection procedure to the augmented n × 2p

augmented matrix.

We define Zj = {λ : β̂j(λ) 6= 0} then set

Wj =

+1 if Xj enters first, Zj > Z̃j

−1 if Xj enters first, Zj < Z̃j

Lemma 1 (Signs)

Let π ∈ {±1}p be a sequence of signs independent of W = (W1,W2, . . . ,Wp)
>, with πj = 1

for all j ∈ N c and πj
iid∼ ±1 for all j ∈ N , then

The procedure is finding those features for which Wj ≥ t, and we have a knockoff estimate of the
FDP as

F̂DP(t) =
1 + #{j : Wj ≤ −t}

min
{

1,#{j : Wj ≥ t}
} .

This estimator is valid since we know that the knockoffs are are under the null hypothesis, and we
can use it to appropriately select the threshold t in order to control the FDP.

6.2 Model-X knockoff

Candes et al. (2017) extended the idea to p > n with some assumptions on X under the assumption
that we know the distribution of X. In general, we build a set of covariates which is uncorrelated
with Y and apply the same type of procedure as before.
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