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1 Introduction to high-dimensional Bayesian inference

High-dimensional modeling has grown in popularity over the last couple of decades, for many
different reasons. We need as working understanding of models in order to be up to speed with
contemporary research and techniques. The Bayesian approach is particularly useful in high di-
mensions, since we can easily introduce non-linearity, introduce complex structures via hierarchical
models, and handle missing data.

Frequentist estimators usually cannot provide confidence intervals for predictions or parameters,
although some work is being done (Van de Geer et al., 2014; J. D. Lee et al., 2016).

The goal for today is to go from simple to complex models,

Y =

p∑
j=1

Xjβj
GAM−−−→

p∑
j=1

fj(Xj)
BART−−−−→ f(X).

We are interested in predicting E
[
Y |X

]
= f(X), with two simultaneous goals:

› Good prediction performance

› Identifying the q true important predictors in X

Typically, p > n and we assume that p grows with n (no further detail). Moreover we have P large
enough that we need some sort of shrinkage or sparsity.

1.1 Spike and slab prior

The standard model is

Y =

p∑
j=1

Xjβj + ε, ε ∼ N (0, σ2),

although we can generalize to GLMs easily, g−1
(
E
[
Y |X

])
=
∑p
j=1Xjβj . Assuming β0 is the true

parameter,

q = ‖β0‖0 =

p∑
j=1

1(β0j 6= 0).

We will discuss prior distributions for β such that they

1. Work when p is large

2. Identify nonzero elements of β0

3. Are easy to implement computationally

We focus on prior distributions of the “spike-and-slab” form, i.e.

p(βj |γj) ∼ (1− γj)δ0 + γjN (0, σ2
β)

p(γj) = τγj (1− τ)1−γj
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1.2 Parameter updates 1 Introduction to high-dimensional Bayesian inference

Summing over γj , we have
p(βj) = (1− τ)δ0 + τN (0, σ2

β),

first introduced by Mitchell and Beauchamp (1988). This prior includes the belief that some covari-
ates are not important while others are. We can also use a prior distribution of the form

p(βj) = (1− τ)N (0, σ2
0) + τN (0, σ2

1),

where σ2
0 < σ2

1 and is small so that it’s sort of a spike near zero. This specification leads to easy
update rules for the parameters, but requires good prior choice of σ2

0 and σ2
1 .

Important: Standardize variables, otherwise you have performance issues and interpretation prob-
lems for the posterior inclusion probabilities.

Reasons to use spike and slab

1. We can look at the posterior probability P
(
γj = 1|D

)
for variable importance.

2. Can look at the full posterior distribution P
(
γ1, . . . , γp|D

)
to identify most likely models.

3. It still performs shrinkage of important coefficients, depending on δ2
β .

The performance of the prior distribution depends on the hyperpriors, since

› τ : prior probability that a coefficient is zero, underlying sparsity.

› σ2
β : impacts the estimates, performs shrinkage and has variable selection properties.

1.2 Parameter updates

A traditional Gibbs sampler would update from full conditionals, which are hard to calculate for βj
and γj .
Unfortunately, if we condition on the current value of βj , we have that

P
(
γj |βj ,−

)
= 1(βj 6= 0),

and γj is never going to change from the starting value. Therefore, we integrate out βj when updating
γj . Usually, we integrate parameters and condition on the data

p(γ|D) =
p(D|γ)p(γ)∑
γ p(D|γ)p(γ)

and therefore sample in order

1. p(γ|D)

2. p(β, τ, σ2
β |γ,D) which is the same as a standard linear model.

Problem: In certain settings this is tractable (e.g. linear models), but otherwise it requires knowl-
edge of the marginal likelihood of the data.

Different Gibbs sampler

A different strategy iterates through the following parameter updates:
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1.2 Parameter updates 1 Introduction to high-dimensional Bayesian inference

› p(βj , γj |−) jointly for each j = 1, . . . , p

› p(τ |−)

› p(σ2
β |−)

The key is to sample together (βj , γj), which is computationally easy and does not get stuck at a
particular γj value. We can sample them from

› p(γj |γ−j ,β−j , τ, σ2
β ,D)

› p(βj |γj ,γ−j ,β−j , τ, σ2
β ,D)

The βj update is simply the full conditional, however γj | − except βj is not straightforward.
However, we have a probability trick to do this.

Denote ϑ = all parameters except γj and βj .

With terrible notation, let

P
(
γj = 1|ϑ,D

)
=

P
(
βj = 0, γj = 1|ϑ,D

)
P
(
βj = 0|γj = 1,ϑ,D

)

=
P
(
ϑ,D|

can remove γj︷ ︸︸ ︷
βj = 0, γj = 1

)
P
(
βj = 0, γj = 1

)
P
(
ϑ,D

)
P
(
βj |γj = 1,ϑ,D

)
=

P
(
ϑ,D|βj = 0

)
P
(
βj = 0, γj = 1

)
P
(
ϑ,D

)
P
(
βj |γj = 1,ϑ,D

)
∝

P
(
βj = 0, γj = 1

)
P
(
βj = 0|γj = 1,ϑ,D

)
=

P
(
βj = 0|γj = 1

)
P
(
γj = 1

)
P
(
βj = 0|γj = 1,ϑ,D

)
=
ϕ(0|0, σ2

β) · τ
ϕ(0|m, v)

.

The update for γj is a bernoulli distribution, since

P
(
γj = 0|ϑ,D

)
∝

P
(
βj = 0|γj = 0

)
P
(
γj = 0

)
P
(
βj = 0|γj = 0,ϑ,D

) .

If the data does not support the inclusion of the coefficient, the denominator in P
(
γj = 1|ϑ,D

)
is

going to be big and the likelihood of γj being 1 is going to be low.

Typically we use τ ∼ Beta(C, p) so that updates are conjugate, where C is a constant, and the
expected sparsity parameter is

E
[
τ
]

=
C

C + p
.

3



2 Nonlinear models

σ2
β is trickier, since it both performs shrinkage and impact variable selection. Moreover, σ2

β shows
both in the numerator and the denominator of

ϕ(0|0, σ2
β) · τ

ϕ(0|m, v)
.

We have that

› σ2
β too small: can’t distinguish spike from slab

› σ2
β too big: posterior probability of inclusion goes down

Remark

Assigning a diffuse prior on the slab is not possible, since it leads to bad inferences when it is not
appropriate. A discussion of prior variance for model selection is Liang et al. (2008).

We can place a conjugate prior on σ2
β , such as

σ2
β ∼ Inv-Gamma(a, b),

or allow a separate slab variance for each covariate (Mitra and Dunson, 2010)

σ2
βj
∼ Inv-Gamma(a, b),

which can reduce shrinkage for larger coefficients, since it is not a “one size fits all” approach. Lastly,
τ and σ2

β can be estimated by empirical Bayes methods.

2 Nonlinear models

2.1 Usual approach

Nonlinear models are of the form

E
[
Y |X

]
= β0 +

p∑
j=1

fj(Xj),

which we want to intuitively model with a spike and slab prior over functions, where the function
is flat if it is not present in the model.

We can make a parametric assumption about fj(·) as a basis function (splines, wavelets, . . . )

fj(Xj) =

K∑
k=1

bk(Xj)βjk

= X̃jβj

If βj = 0, then f(Xj) = 0, therefore we use

p(βj |γj) ∼ (1− γj)δ0 + γjNK(0,Σβ),

which is similar to the univariate case and has lots of connections to grouped – either all in or all
out – variable selection approaches (Bai, Moran, et al., 2020; Bai, Rockova, et al., 2021). As a prior

4



2.2 Nonparametric approach 2 Nonlinear models

distribution, we can use some natural choices in order not to have too many parameters, which work
reasonably well in practice

Σβ =

σ2
β(X>j Xj)

−1

σ2
βIk

The orthogonal matrix can be used for orthogonalized covariates.

2.2 Nonparametric approach

We can place a prior on the function fj(·) via Gaussian processes, which have been shown to be very
flexible and to work well empirically,

fj ∼ GP
(
µj(Xj),Kj(Xj , X

>
j )
)
.

Here, µj(·) is a mean function, zero or linear, and Kj(Xj , X
>
j ) is a kernel function that reflects the

similarity/distance between Xj and X>j .

Since GPs are a very cool way of specifying multivariate distributions, we have for each finite
collection of points the following result,(

fj(Xj1), . . . , fj(Xjn)
)
∼ N

((
µj(Xj1), . . . , µj(Xjn)

)>
,Σj

)
,

where Σj =
(
K(Xji, Xjk)

)
i,k=1,...,n

. We can embed this in a spike-and-slab framework as (Reich
et al., 2009)

fj(Xj) ∼ N (0, σjΣj)

σj ∼ (1− γj)δ0 + γjG,

where G is a continuous distribution on the positive real line. Alternatively, we can model it as

fj(Xj) ∼ (1− γj)δ0 + γjNn(0, σjΣj).

Instead of including this variable as a linear model, these approaches include it as a Gaussian
Process nonparametric regression function.

We can use the same trick to see that

P
(
γj = 1|D,ϑ

)
∝ τ ϕ(0|0, σjΣj)

ϕ(0|M,V )
,

where ϕ(·) is now the n-dimensional multivariate normal density. The problem now is to calculateM
and V , which requires the inversion of a n×n matrix and is extremely costly from a computational
point of view. Some approximations include Gramacy and H. K. H. Lee (2009), S. Banerjee et al.
(2008) and A. Banerjee et al. (2013).

Take-home

› If computation time is a concern, use the basis function approach

fj(Xj) = X̃jβj .
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3 Bayesian Additive Regression Trees (BART)

› Otherwise, use Gaussian processes as in Qamar and Tokdar (2014), such that

E
[
Y |X

]
= f1(X) + . . .+ fk(X),

where each fj is a separate GP which includes only a subset of the covariates.

3 Bayesian Additive Regression Trees (BART)

BART can perform nonparametric regression and classification, variable selection with some exten-
sions, and exploration of interactions between variables.

Figure 1: A simple decision tree, which implies variable selection through vari-
ables used to build rules.

Variable selection: If I don’t split using a particular variable, it means that it is automatically
selected as non-relevant.

BART (Chipman et al., 2010; Linero and Yang, 2018; Linero, Sinha, et al., 2020; Rockova and
van der Pas, 2019) is a method that combines a bunch of bad decision trees in order to obtain a
better predictor. Boosting is another method that falls in this category, and the gold standard is
gradient boosted decision trees (xgboost).

We assume our function to be a sum of regression trees

r(x) = T1 + T2 + . . .+ TT

where on each tree Tt and each collection of leafs Mt we place a prior distribution. There are
problems in placing a prior on T , since rjMCMC are quite hard to apply in this case. Tradition is
to pick a standard value of T = 50 or T = 200, and it can be shown that if T →∞ there is a result
that shows that this becomes an approximation to a Gaussian process if the tree leaves have prior
variance O(T−1).

Formally,

r(x) =

T∑
t=1

g(x|Tt,Mt),

where g(·) is the associated step function to the tree. You can see this as an adaptive basis function
expansion where the basis is made by step functions (LOL carina questa, mi piace).
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3.1 Semiparametric regression 3 Bayesian Additive Regression Trees (BART)

Adding trees together induces smoothness, since different splits yield different values and there is a
correlation between the values of the cells Figure 2.

Figure 2: Smoothness and correlation induced by adding together decision trees.

To sample from the prior you start with a node and grow the tree by deciding whether to stop or
keep splitting the tree.

3.1 Semiparametric regression

Yi = r(Xi) + εi, εi ∼ N (0, σ2),

also nonparametric probit regression and Poisson loglinear models

Yi ∼ Ber
(
Φ {r(Xi)}

)
Yi ∼ Pois

(
exp {r(Xi)}

)
.

Many other possibilities are used in practice, since there are collections of default hyperparameters
which seem to work extremely well for some reason (see slide ‘Magic Defaults’).

Algorithm fitting is carried out via Bayesian backfitting, which can be proven to converge to the
actual posterior distribution.
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3.2 Measuring variable importance 3 Bayesian Additive Regression Trees (BART)

Algorithm 1 Bayesian backfitting
1:

2: for t = 1, . . . , T do
3: Compute residual Ri = Yi −

∑
k 6=t g(Xi|Tk,Mk)

4: Propose T ′ from proposal distribution Q(T ′|T )

5: Compute marginal likelihood of Tt and T ′ as

Λ(T )
∏
`∈T

∫
π(µ)

∏
i∈`

N (Ri|µ, σ2) dµ

6: Set Tt ← T ′ with probability

p =
Λ(T ′)πT (T ′)Q(Tt|T ′)
Λ(Tt)πT (Tt)Q(T ′|Tt)

7: SampleMt from its full conditional
8: end for

Proposal distributions for sampling a new tree can be specified with different mechanisms:

› Birth: take a leaf node and split it into two leaves.

› Death: collapse two leaves into their parent.

› Prior : sample a new tree from the prior.

3.2 Measuring variable importance

There are different possibilities for measuring importance:

a) A variable is relevant if it is included in at least one branch of the ensemble.

b) A variable is relevant if it is included in many branches of the ensemble.

Def. (Variable importance)

The importance of a variable j is E
[
mj/B|D

]
, the average proportion of all branches which

split on variable j.

Other ways of variable importance metrics are Sobol’ indices (Horiguchi et al., 2020).

We can optimize the prior splitting proportion sj for the j-th coordinate by an empirical Bayes
procedure. Using an EM algorithm, we can start from a prior value P and iteratively update sj
using

sj ←
E[mj |D]

E[B|D]
.

Otherwise, we can use a s ∼ Dirichlet(η, . . . , η) prior and obtain a MAP estimator by starting from
s = (P−1, . . . , P−1) and iterating

sj ←
max {E[mj + η − 1|D, s], 0}∑
k maxk {E[mk + η − 1|D, s], 0}

.

8



3.3 Number of predictors 3 Bayesian Additive Regression Trees (BART)

3.3 Number of predictors

If B is the number of branches, the number of active variables Q under the default BART prior
setting sj = P−1 is

EΠ

[
Q|B

]
= B +O(P−1),

which is not very informative. Using s ∼ Unif(SP−1) is also not useful, since it leads to the same
answer

EΠ

[
Q|B

]
= B +O(P−1).

We can use a sparsity-inducing prior using a s ∼ Dirichlet(α/P, . . . , α/P ) and it can be shown that

Q− 1 ≈ Pois(ϑ),

where

ϑ = α

B−1∑
i=1

1

α+ i
.

This last result holds some reminiscence to the number of prior expected number of clusters under
a Dirichlet Process prior.
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