Monitoring statistics
StatisticalProcessMonitoring.AEWMA
— TypeAEWMA(λ, k, value)
Adaptive exponentially weighted moving average with design parameters λ
, k
, and initial value value
.
The update mechanism for the statistic $C_t$ based on a new observation x
is given by
$C_t = (1-\phi(e))\cdot C_{t-1} + \phi(e) * x$,
where \phi(e)
is a forecast error function based on the Huber score function.
Arguments
λ::Float64
: The smoothing constant. Default is0.1
.k::Float64
: The threshold value in the Huber score. Default is3.0
`.value::Float64
: The initial value of the statistic. Default is 0.0.
References
Capizzi, G. & Masarotto, G. (2003). An Adaptive Exponentially Weighted Moving Average Control Chart. Technometrics, 45(3), 199-207.
StatisticalProcessMonitoring.CUSUM
— TypeCUSUM(k, value, upw::Bool)
CUSUM statistic with design parameter k
and initial value value
.
The update mechanism based on a new observation x
is given by:
- if
upw == true
, then $C_t = \max\{0, C_{t-1} + x - k\}$; - if
upw == false
, then $C_t = \min\{0, C_{t-1} + x + k\}$.
Arguments
k::Float64
: The allowance constant of the CUSUM statistic. Defaults to1.0
.value::Float64
: The current value of the cumulative sum. Defaults to0.0
.upw::Bool
: A boolean indicating whether the CUSUM statistic is increasing or decreasing. Defaults totrue
.
References
Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100. https://doi.org/10.2307/2333009
StatisticalProcessMonitoring.EWMA
— TypeEWMA(λ, value)
Exponentially weighted moving average with design parameter λ
and initial value value
.
The update mechanism for the statistic $C_t$ based on a new observation x
is given by
$C_t = (1-λ)\cdot C_{t-1} + λ \cdot x$.
Arguments
λ::Float64
: The smoothing constant. Defaults to0.1
.value::Float64
: The initial value for the EWMA statistic. Defaults to0.0
.
References
Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239-250. https://doi.org/10.1080/00401706.1959.10489860
StatisticalProcessMonitoring.OneSidedEWMA
— TypeOneSidedEWMA(λ, value, upw::Bool)
OneSidedEWMA statistic with design parameter λ
and initial value value
.
The update mechanism based on a new observation x
is given by:
- if
upw == true
, then $C_t = \max\{0, (1-λ)\cdot C_{t-1} + λ\cdot x\}$; - if
upw == true
, then $C_t = \min\{0, (1-λ)\cdot C_{t-1} + λ\cdot x\}$;
Arguments
λ::Float64
: The smoothing constant. Default is0.1
.value::Float64
: The current value of the statistic. Default is0.0
.upw::Bool
: Whether the statistic should monitor increases (true
) or decrease (falses
) in the process mean. Default istrue
.
StatisticalProcessMonitoring.Shewhart
— TypeShewhart(value)
Shewhart control chart.
The update mechanism of $C_t$ based on a new observation x
is given by
$C_t = x$.
References
Shewhart, W. A. (1931). Economic Control of Quality Of Manufactured Product. D. Van Nostrand Company.
StatisticalProcessMonitoring.WCUSUM
— TypeWCUSUM <: AbstractStatistic
A weighted cumulative sum statistic.
Arguments
k::Float64
: The allowance constant of the CUSUM used for calculating the WCUSUM statistic. Default is 1.0.λ::Float64
: The smoothing constant for updating the estimate of the fault signature. Must be a value between 0 and 1. Default is 0.2.value::Float64
: The initial value of the weighted cumulative sum statistic. Default is 0.0.Q::Float64
: The residual value of the weighted cumulative sum. Default is 0.0.upw::Bool
: Whether to monitor increases in the mean (true
) or decreases (false
). Default istrue
.
References
Shu, L., Jiang, W., & Tsui, K.-L. (2008). A Weighted CUSUM Chart for Detecting Patterned Mean Shifts. Journal of Quality Technology, 40(2), 194-213. https://doi.org/10.1080/00224065.2008.11917725
Examples
stat = WCUSUM()
get_design(stat) # returns [1.0, 0.2]
update_statistic(stat, 3.0) # returns 1.2
stat.Q # returns 0.6
StatisticalProcessMonitoring.ALT
— TypeALT{M}
A Generalized Likelihood Ratio statistic for monitoring changes in the variance-covariance matrix.
Fields
value::Float64
: The value of the statistic, initialized to 0.0.Ω::M
: The precision matrix of the in-control process.detΣ::Float64
: The determinant of the in-control process variance.
References
Alt, F. A. (1984). Multivariate quality control. In N. L. Johnson, S. Kotz, & C. R. Read (Eds.), The encyclopedia of statistical sciences (Vol. 6, pp. 110-122). Wiley.
StatisticalProcessMonitoring.AMCUSUM
— TypeAMCUSUM(λ, p; minshift = 0.1, shift = 0.0, Et = zeros(p), t = 0, stat = MCUSUM(k=0.1, p=p))
An Adaptive Multivariate Cumulative Sum (MCUSUM) statistic.
Arguments
λ::Float64
: The smoothing constant, such that 0.0 <= λ <= 1.0.p::Int
: The number of quality variables to monitor.minshift::Float64
: The minimum shift value to be detected. Default is 0.1.shift::Float64
: The current shift value. Default is 0.0.Et::Vector{Float64}
: The vector Et of smoothed deviations from the zero mean. Has to be exactly equal tozeros(p)
t::Int
: The current value of time. Default is 0.stat::C
: The underlying classical MCUSUM statistic. Default is MCUSUM(k=0.1, p=p).
References
Dai, Y., Luo, Y., Li, Z., & Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Quality and Reliability Engineering International, 27(7), 877-884. https://doi.org/10.1002/qre.1177
StatisticalProcessMonitoring.DiagMEWMA
— TypeDiagMEWMA(Λ, value)
Exponentially weighted moving average with diagonal smoothing matrix Λ
and initial value value
.
The update mechanism based on a new observation x
is given by
$Z_t = (I-Λ)Z_{t-1} + Λ x_t$,
and the chart value is defined as
$C_t = Z_t' Λ^{-1} Z_t$.
Arguments
Λ::Vector{Float64}
: The vector of smoothing constants.value::Float64
: Current value of the statistic (default = 0.0).z::Vector{Float64}
: Vector of smoothed observations (Default:zeros(length(Λ))
).inv_Σz::Matrix{Float64}
: Inverse of the covariance matrix of the control variates.
References
Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A Multivariate Exponentially Weighted Moving Average Control Chart. Technometrics, 34(1), 46-53. https://doi.org/10.1080/00401706.1992.10485232
StatisticalProcessMonitoring.MAEWMA
— TypeMAEWMA(λ, k, value, z::Vector{Float64})
A Multivariate Adaptive Exponentially Weighted Moving Average.
The update mechanism based on a new observation x
is given by
$Z_t = (I-Ω)*Z_{t-1} + Ω * x_t$,
where Ω = ω(e)*I is an adaptive generalization of the classical MEWMA smoothing matrix. The chart value is defined as
$value_t = Z_t' Z_t$.
Arguments
λ::Float64
: The value of the EWMA smoothing parameter.k::Float64
: The value of the parameter of the Huber score.value::Float64
: The value of the statistic. (default:0.0
)z::Vector{Float64}
: The vector of smoothed observations.
References
Mahmoud, M. A., & Zahran, A. R. (2010). A Multivariate Adaptive Exponentially Weighted Moving Average Control Chart. Communications in Statistics - Theory and Methods, 39(4), 606-625. https://doi.org/10.1080/03610920902755813
StatisticalProcessMonitoring.MCUSUM
— TypeMCUSUM(k, p, value = 0.0, St = zeros(p))
A Multivariate Cumulative Sum (MCUSUM) statistic.
Arguments
k::Float64
: The value of the allowance parameter.p::Int
: The number of variables to be monitored.value::Float64
: The initial value of the statistic. Default is 0.0.St::Vector{Float64}
: A vector representing the multivariate cumulative sum at the current timet
.
Examples
stat = MCUSUM(0.25, 2, 0.0, [0.0, 0.0])
References
Crosier, R. B. (1988). Multivariate Generalizations of Cumulative Sum Quality-Control Schemes. Technometrics, 30(3), 291-303. https://doi.org/10.2307/1270083
StatisticalProcessMonitoring.MEWMC
— TypeMEWMC(λ, value)
An Exponentially Weighted Moving Covariance Matrix statistic with smoothing constant λ
and initial value value
.
The update mechanism for $C_t$ based on a new observation x \in \mathbb{R}^p
is given by
$Z_t = (1 - λ)Z_{t-1} + λ \cdot xx'$,
and the chart value is defined as
$C_t = \text{tr}(Z_t) - \log|Z_t| - p$.
References
Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate Exponentially Weighted Moving Covariance Matrix. Technometrics, 50(2), 155-166.
StatisticalProcessMonitoring.MEWMS
— TypeMEWMS(λ, value)
Exponentially weighted moving covariance matrix with smoothing constant λ
.
The update mechanism based on a new observation x \in \mathbb{R}^p
is given by
$Z_t = (1 - λ)*Z_{t-1} + λ \cdot xx'$,
and the chart value is defined as
``valuet = \text{tr}(Zt).
References
Huwang, L., Yeh, A. B., & Wu, C.-W. (2007). Monitoring Multivariate Process Variability for Individual Observations. Journal of Quality Technology, 39(3), 258-278. https://doi.org/10.1080/00224065.2007.11917692
StatisticalProcessMonitoring.MShewhart
— TypeMShewhart(value)
Shewhart control chart for monitoring multivariate observations with initial value value
.
The update mechanism of $C_t$ based on a new observation x
is given by
$C_t = x'x$.
References
Shewhart, W. A. (1931). Economic Control of Quality Of Manufactured Product. D. Van Nostrand Company.
StatisticalProcessMonitoring.RiskAdjustedCUSUM
— TypeRiskAdjustedCUSUM{G} <: AbstractStatistic
Risk-adjusted CUSUM monitoring statistic.
Arguments
Δ::Float64
: Shift in the linear predictor of the logistic regression model to be detected.model::G
: Logistic regression model used for prediction. Must have apredict(model, x)
function.response::Symbol
: Name of the response variable in theDataFrame
.value::Float64
: Initial value of the statistic. Defaults to0.0
.
References
Steiner, S. H., Cook, R. J., Farewell, V. T., Treasure, T. (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics, 1(4), 441-452. https://doi.org/10.1093/biostatistics/1.4.441 ```
StatisticalProcessMonitoring.LocationScaleStatistic
— TypeLocationScaleStatistic{S, M, P}
A mutable struct representing a statistic applied to a location-scale family.
Fields
stat::S
: The statistic.μ::M
: The location parameter.Ω::P
: The inverse square root of the variance.
Examples
STAT = EWMA(λ = 0.2)
RSTAT = LocationScaleStatistic(STAT, 1.0, 2.5)
StatisticalProcessMonitoring.categorize_data
— Methodcategorize_data(x::AbstractVector, qtls::Vector{Vector{Float64}})
categorize_data(x::AbstractMatrix, qtls::Vector{Vector{Float64}})
Categorize continuous data using the medians of the continuous variables.
StatisticalProcessMonitoring.compose
— Methodcompose(lhs::Symbol, rhs::Tuple)
compose(lhs::Symbol, rhs::Term)
compose(lhs::Symbol, rhs::ConstantTerm)
Compose a response variable lhs
with a tuple or vector of predictors rhs
terms.
Arguments
lhs::Symbol
: The left-hand side of the equation.rhs::Tuple
: The right-hand side of the equation.
Returns
- The composed equation.
If rhs
is empty, the function returns lhs
composed with an intercept. Otherwise, the function returns lhs
composed with the terms in rhs
.
StatisticalProcessMonitoring.get_removable_terms
— Methodget_removable_terms(rhs)
Given an iterable collection of terms rhs
, this function returns the indices of the terms in rhs
that can be removed in a backward elimination step.
Arguments
rhs
: An iterable collection of terms in the equation.
Returns
- An array of indices of the terms in
rhs
that have the maximum order.
StatisticalProcessMonitoring.kronecker_matrix
— Methodkronecker_matrix(qtls::AbstractVector)
Compute the matrix given by the Kronecker vectors according to Equation (6) of Wang et Al. (2017). This matrix is used to compute the approximate GLRT statistic to test the null hypothesis that the main effects and the second order interactions of a log-linear model are stable.
References
Wang, J., Li, J., & Su, Q. (2017). Multivariate Ordinal Categorical Process Control Based on Log-Linear Modeling. Journal of Quality Technology, 49(2), 108-122. https://doi.org/10.1080/00224065.2017.11917983
StatisticalProcessMonitoring.quantile_range
— Methodquantile_range(lower, upper, m)
Get the set of quantiles needed to divide the data in m classes.
StatisticalProcessMonitoring.LLCUSUM
— TypeLLCUSUM(x::AbstractMatrix, k::Real; ncuts::AbstractVector = [2 for _ in eachcol(x)])
A distibution-free Log-Linear CUSUM monitoring statistic based on data categorization.
Fields
k::Float64
: The allowance constant of the CUSUM statistic.value::Float64
: The initial value of the statistic (default: 0.0).Sobs::Vector{Float64}
: The vector of cumulative observed categories.Sexp::Vector{Float64}
: The vector of expected observed categories.qtls::Vector{Vector{Float64}}
: A vector of quantiles used for data categorization.f0::Vector{Float64}
: The vector of IC cell probabilities, estimated using a loglinear model.table::Matrix{Float64}
: The matrix of cell combinations.
References
Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), 664-677. https://doi.org/10.1080/07408170701744843
StatisticalProcessMonitoring.categorical_to_index
— Methodcategorical_to_index(g::AbstractVector, table::AbstractMatrix)
Converts a categorized variable g
to its corresponding index in a table.
Arguments
g::AbstractVector
: The categorical variable to convert.table::AbstractMatrix
: The table containing all the possible categories.
Returns
Int
: The index of the category in the table.
Raises
ErrorException
if the index is not found
Example
x = randn(500, 3)
df, table, qtls = create_table(x, [2 for _ in eachcol(x)])
xnew = randn(3)
g = categorize_data(xnew, qtls)
idx = categorical_to_index(g, table)
StatisticalProcessMonitoring.estimate_loglinear_model_probabilities
— Methodestimate_ordinal_model_probabilities(df, table)
Estimates the probabilities of an ordinal loglinear model based on the observed cell counts.
Arguments
df::DataFrame
: The data frame containing the predictor variables.table::AbstractMatrix
: The matrix of predictor values for which probabilities are to be estimated.
Returns
prob::Vector{Float64}
: A vector of estimated probabilities.
StatisticalProcessMonitoring.LLD
— TypeLLD(x::AbstractMatrix, l::Real; ncuts::AbstractVector = [3 for _ in eachcol(x)], N = 1)
A Log-Linear Directional monitoring statistic based on data categorization.
Fields
l::Float64
: The exponentially weighted smoothing constant of the statistic.value::Float64
: The initial value of the statistic (default: 0.0).qtls::Vector{Vector{Float64}}
: A vector of quantiles used for data categorization.f0::Vector{Float64}
: The vector of IC cell probabilities, estimated using a loglinear model.table::Matrix{Float64}
: The matrix of cell combinations.Sigma::Matrix{Float64}
: The covariance matrix of the cell counts.directions::Matrix{Float64}
: The matrix of directions to be used in the hypohesis test (see Equation (6) of [Li, 2012]). This is calculated according to the procedure described in Equations (5) and (6) of [Wang, 2017].N::Int
: The number of observations at each time point (default: 1)z_k::Vector{Float64}
: The current vector of smoothed values.
References
Li, J., Tsung, F., & Zou, C. (2012). Directional Control Schemes for Multivariate Categorical Processes. Journal of Quality Technology, 44(2), 136–154. https://doi.org/10.1080/00224065.2012.11917889
Wang, J., Li, J., & Su, Q. (2017). Multivariate Ordinal Categorical Process Control Based on Log-Linear Modeling. Journal of Quality Technology, 49(2), 108-122. https://doi.org/10.1080/00224065.2017.11917983
StatisticalProcessMonitoring.MOC
— TypeMOC(x::AbstractMatrix, l::Real; ncuts::AbstractVector = [3 for _ in eachcol(x)], N = 1)
A Multivariate Ordinal Categorical monitoring statistic based on data categorization.
Fields
l::Float64
: The exponentially weighted smoothing constant of the statistic.value::Float64
: The initial value of the statistic (default: 0.0).qtls::Vector{Vector{Float64}}
: A vector of quantiles used for data categorization.f0::Vector{Float64}
: The vector of IC cell probabilities, estimated using a loglinear model.table::Matrix{Float64}
: The matrix of cell combinations.inv_VCOV::Matrix{Float64}
: The matrix containing the inverse covariance to be used in the running statistic.N::Int
: The number of observations at each time point (default: 1)z_k::Vector{Float64}
: The current vector of smoothed values.
References
Wang, J., Li, J., & Su, Q. (2017). Multivariate Ordinal Categorical Process Control Based on Log-Linear Modeling. Journal of Quality Technology, 49(2), 108-122. https://doi.org/10.1080/00224065.2017.11917983
StatisticalProcessMonitoring.estimate_ordinal_model_probabilities
— Methodestimate_ordinal_model_probabilities(df, table)
Estimates the probabilities of an ordinal loglinear model based on the observed cell counts.
Arguments
df::DataFrame
: The data frame containing the predictor variables.table::AbstractMatrix
: The matrix of predictor values for which probabilities are to be estimated.
Returns
prob::Vector{Float64}
: A vector of estimated probabilities.
StatisticalProcessMonitoring.NEWMA
— TypeNEWMA
A Nonparametric Exponentially Weighted Moving Average statistic for monitoring profiles.
Fields
λ::Float64
: The EWMA smoothing constant. Must be between 0 and 1.value::Float64
: The current value of the NEWMA statistic.σ::Float64
: The standard deviation of the error term.cdf_σ::E
: A function that computes the (estimated) cdf of the error termσ
with signaturecdf_σ(x::Real)
.g::F
: The estimated regression function object. Must have a method of signaturepredict(g::F, x::AbstractVector)
.Ej::Vector{Float64}
: The current smoothed observations.
References
Zou, C., Tsung, F., & Wang, Z. (2008). Monitoring Profiles Based on Nonparametric Regression Methods. Technometrics, 50(4), 512-526. https://doi.org/10.1198/004017008000000433
StatisticalProcessMonitoring.NEWMA
— MethodNEWMA(λ::Float64, g::F, dat::FunctionalData)
Construct a NEWMA control chart by calculating the standard errors for a functional regression model.
Arguments
λ::Float64
: The EWMA smoothing constant. Must be between 0 and 1.g::F
: The estimated regression function object. Must have a method of signaturepredict(g::F, x::AbstractVector)
.dat::FunctionalData
: AFunctionalData
object containing observations of the regression curves.Ej::Vector{Float64}
: The current smoothed observations.
Returns
The constructed NEWMA control chart.
Examples
using Loess
xs = 10 .* rand(100)
ys = sin.(xs) .+ rand(100)
g = loess(xs, ys)
dat = FunctionalData(xs, ys)
NEWMA(0.2, g, dat)
StatisticalProcessMonitoring.AbstractSampling
— TypeAbstractSampling
Abstract type representing a generic sampling method for partially-observed data.
StatisticalProcessMonitoring.ThompsonSampling
— TypeThompsonSampling <: AbstractSampling
Type representing the Thompson Sampling method.
Fields
β::Float64
: A parameter regulating the concentration of theDirichlet
distribution for Thompson sampling.
Examples
ts = ThompsonSampling(2.0)
StatisticalProcessMonitoring.TopQ
— TypeTopQ <: AbstractSampling
Type representing the TopQ sampling method. New data is generating by taking the q
local statistics with highest value.
References
Mei, Y. (2011). Quickest detection in censoring sensor networks. 2011 IEEE International Symposium on Information Theory Proceedings, 2148-2152. https://doi.org/10.1109/ISIT.2011.6034390
StatisticalProcessMonitoring.new_layout
— Methodnew_layout(sampling::AbstractSampling, local_statistics) -> layout
Abstract function that creates a new layout based on the given sampling method and local statistics.
Arguments
sampler::AbstractSampling
: An instance of an object subtype ofAbstractSampling
.local_statistics
: Array of local statistics used for generating the layout.q::Int
: The number of items to include in the layout.
Returns
layout
: The generated layout to observe at the next iteration.
Examples
# Create an instance of ThompsonSampling
ts = ThompsonSampling(2.0)
# Generate a layout using ThompsonSampling
stats = [1, 2, 3, 4]
layout = new_layout(ts, stats, 2)
StatisticalProcessMonitoring.RSADA
— TypeRSADA{D,S}
A R-SADA monitoring statistic, whcih is used for monitoring the mean of partially-observed independent data streams. The monitoring statistic iteratively samples arms (data streams) and updates a set of local statistics based on the observed values of the data streams. The RSADA algorithm uses the local statistics to make decisions on which arms to sample at each iteration.
Fields
k
: The allowance constant of the CUSUM Control chart. Default value is 0.1.mu_min
: The minimum value of the mean shift to detect. Default value is 0.2.p::Int
: The number of independent data streams. Default value is 1.q::Int
: The number of data streams that are observable at each iteration. Default value is 1.dist::Distribution
: The distribution of the data streams. Default value isNormal(0,1)
.value
: The current value of the monitoring statistic. Default value is 0.0.eta
: The vector of augmented variables. Initialized to be a vector of zeros for each data stream.obs::Vector{Int}
: The indices of the data streams to sample. Default value is an array of q random integers between 1 and p.S1::Vector{F}
: The sum of the rewards for each arm.S2::Vector{F}
: The sum of the squared rewards for each arm.
References
Xian, X., Zhang, C., Bonk, S., & Liu, K. (2019). Online monitoring of big data streams: A rank-based sampling algorithm by data augmentation. Journal of Quality Technology, 53(2), 135-153. https://doi.org/10.1080/00224065.2019.1681924
StatisticalProcessMonitoring.augmented_vector!
— Methodaugmented_vector(y, obs, mu, dist)
Compute the augmented vector eta
(Equation 10 of [Xian et Al., 2019]) based on the given parameters.
Arguments
y
: The input vector.obs
: The indices of the observed elements iny
.mu
: The mean parameter.dist
: The IC distribution of the individual data streams.
Returns
eta
: The computed augmented vector.
References
Xian, X., Zhang, C., Bonk, S., & Liu, K. (2019). Online monitoring of big data streams: A rank-based sampling algorithm by data augmentation. Journal of Quality Technology, 53(2), 135-153. https://doi.org/10.1080/00224065.2019.1681924
StatisticalProcessMonitoring.update_sampling!
— Methodupdate_sampling!(STAT::RSADA)
Update the monitored data streams of the RSADA monitoring statistic STAT
by selecting the top-q
values of the local monitoring statistics in STAT.S1
.
Arguments
STAT
: The RSADA object to update.
Returns
STAT.obs
: The selected indices of the topSTAT.q
values ofSTAT.S1
.
StatisticalProcessMonitoring.TRAS
— TypeTRAS{F,D}
Fields
A Top-r-based Adaptive Sampling monitoring statistic for monitoring multiple data streams with partial observations.
Fields
k::Float64
: The allowance constant for the CUSUM statistic. Defaults to0.1
.mu_min::Float64
: The minimum shift to be detected. Defaults to1.0
.value::Float64
: The current value of the monitoring statistic. Defaults to0.0
.Δ::Float64
: The compensation coefficient for non-observed variables.r::Int
: The number of largest variables to sum.q::Int
: The total number of observable variables.p::Int
: The total number of variables.W::Vector{Float64}
: The vector of local monitoring statistics. Defaults to a vector of zeros.W1::Vector{Float64}
: The vector used to store the local monitoring statistics to detect increases in the mean. Defaults to a vector of zeros.W2::Vector{Float64}
: The vector used to store the local monitoring statistics to detect decreases in the mean. Defaults to a vector of zeros.obs::Vector{Int}
: The selected indices of the topq
values of local monitoring statistics. Defaults to a random sample of sizeq
from the range1:p
.sampler::S
: The sampling strategy used to select the next set ofobs
indices. Defaults toThompsonSampling()
.
References
Liu, K., Mei, Y., & Shi, J. (2015). An Adaptive Sampling Strategy for Online High-Dimensional Process Monitoring. Technometrics, 57(3), 305-319. https://doi.org/10.1080/00401706.2014.947005
StatisticalProcessMonitoring.update_sampling!
— Methodupdate_sampling!(STAT::TRAS)
Update the monitored data streams of the TRAS monitoring statistic STAT
using its associated AbstractSampler
object.
Arguments
STAT
: The TRAS object to update.
Returns
STAT.obs
: The selected indices of the topSTAT.q
values ofSTAT.S1
.